

Installation Guide
Installation Guide for Fabasoft app.telemetry 2015
Update Rollup 3

 Installation Guide for Fabasoft app.telemetry 2015
Update Rollup 3

2

Copyright ©

Fabasoft R&D GmbH, A-4020 Linz, 2015.

All rights reserved. All hardware and software names used

are registered trade names and/or registered trademarks of

the respective manufacturers.

These documents are highly confidential. No rights to our

software or our professional services, or results of our

professional services, or other protected rights can be based

on the handing over and presentation of these documents.

Distribution, publication or duplication is not permitted.

 Installation Guide for Fabasoft app.telemetry 2015
Update Rollup 3

3

Contents

1 Introduction___ 6

2 Prerequisites for Linux Systems ___ 7

2.1 Prerequisites for Fabasoft app.telemetry Agent ____________________________________ 7

2.2 Prerequisites for Fabasoft app.telemetry Web Service _______________________________ 7

2.3 Prerequisites for other app.telemetry Modules _____________________________________ 7

2.4 Additional prerequisites for Fabasoft app.telemetry Server ___________________________ 7

2.5 Configuration of SNMP ___ 8

3 Installation on Linux Systems__ 9

3.1 Installation of Fabasoft app.telemetry Agent _______________________________________ 9

3.1.1 Installation of Fabasoft app.telemetry Software-Telemetry Web Service ______________ 9

3.1.2 Installation of additional (optional) Fabasoft app.telemetry Modules ________________ 10

3.2 Installation of Fabasoft app.telemetry Server _____________________________________ 10

3.2.1 Loading Fabasoft app.telemetry License _____________________________________ 10

3.2.2 Configuration of Apache Web Server for Fabasoft app.telemetry __________________ 11

3.2.3 Enable Data compression ___ 12

4 Prerequisites for Microsoft Windows Systems _____________________________________ 13

4.1 Prerequisites for Fabasoft app.telemetry Agent ___________________________________ 13

4.2 Prerequisites for Fabasoft app.telemetry Web Service ______________________________ 13

4.3 Prerequisites for Fabasoft app.telemetry Server ___________________________________ 13

5 Installation on Microsoft Windows Systems _______________________________________ 14

5.1 Installation of Fabasoft app.telemetry Agent ______________________________________ 14

5.1.1 Fabasoft app.telemetry Agents on Microsoft Windows Cluster Nodes _______________ 15

5.1.2 Installation of Fabasoft app.telemetry Software-Telemetry Web Service _____________ 15

5.2 Installation of Fabasoft app.telemetry Server _____________________________________ 18

5.2.1 Loading Fabasoft app.telemetry License _____________________________________ 21

6 Start and Use the Fabasoft app.telemetry Client ___________________________________ 22

6.1 Configuration of Infrastructure ___ 23

6.1.1 Creating Agents __ 26

6.1.2 Detection of Applications__ 27

6.1.3 Creating Service Checks ___ 27

6.1.4 Special Service Checks and their Parameters _________________________________ 28

6.2 Using Software-Telemetry Log Pools and Top X Reports ____________________________ 32

6.2.1 Top X Report / Drill-Down Analysis __ 34

6.2.2 Configure a Database for Software-Telemetry Logs ____________________________ 35

6.2.3 Filtered Log Pools ___ 35

6.2.4 View on Log Pools __ 38

 Installation Guide for Fabasoft app.telemetry 2015
Update Rollup 3

4

6.2.5 Syslog Log Pools ___ 39

6.2.6 Microsoft Windows Eventlog Forwarder ______________________________________ 39

6.3 Inbox for Incoming Feedbacks___ 40

6.4 Feedback Forms Designer ___ 41

6.5 Configure Web Timing ___ 43

6.6 Configure Web Timing with Feedback Dialog _____________________________________ 44

6.7 Configure Notifications for Status Changes _______________________________________ 45

6.7.1 Configure Notification Schedules ___ 46

6.8 Configure Service Level Definitions ___ 47

6.9 Using Dashboards and Charts___ 48

6.9.1 Chart and Data Source Types ___ 48

6.9.2 General Chart Properties ___ 54

6.9.3 Dashboard View __ 55

7 Product Version Upgrades ___ 56

7.1 Upgrading to Version 2015 ___ 56

7.1.1 Special Notes for Upgrades on RHEL/CentOS 6 with SELinux ____________________ 56

7.1.2 Upgrade Procedure on Linux Systems _______________________________________ 56

7.1.3 Upgrade Procedure on Microsoft Windows Systems ____________________________ 57

7.1.4 Configuration changes for Fabasoft Folio when using Software-Telemetry Web Service 57

8 Fabasoft app.telemetry Architecture ___ 59

8.1 Fabasoft app.telemetry Server __ 59

8.1.1 Fabasoft app.telemetry Server Service _______________________________________ 59

8.1.2 Fabasoft app.telemetry Worker Service ______________________________________ 59

8.1.3 Fabasoft app.telemetry Webservice ___ 59

8.1.4 Fabasoft app.telemetry Ecomm Service ______________________________________ 59

8.2 Fabasoft app.telemetry Agent ___ 60

8.3 Fabasoft app.telemetry Client ___ 60

8.4 Secure Communication __ 60

8.4.1 Certificate Management __ 60

8.4.2 Trusted Certificates __ 61

8.4.3 Failover/Standby configuration ___ 61

9 Appendix __ 61

9.1 Installing Internet Information Services on Microsoft Windows Server 2008 / 2012 ________ 61

9.2 Enabling SSL after installation of Fabasoft app.telemetry Server ______________________ 63

9.2.1 SSL Configuration on Microsoft Windows (IIS) _________________________________ 63

9.2.2 SSL Configuration on Linux (Apache)__ 64

9.3 Debugging and Logging __ 65

 Installation Guide for Fabasoft app.telemetry 2015
Update Rollup 3

5

9.3.1 Microsoft Windows __ 65

9.3.2 Linux ___ 65

9.3.3 Fabasoft app.telemetry Client - Logging ______________________________________ 66

9.4 Special Configuration Parameters __ 66

9.4.1 Configuration of Listening Ports for Fabasoft app.telemetry Agent/Server ___________ 66

9.4.2 Configuration of Software-Telemetry Data Directory (Server) _____________________ 67

9.4.3 Configuration of Software-Telemetry Session Export Directory (Server) _____________ 68

9.4.4 Configuration of Disk Cache and Memory Buffer for the Agent ____________________ 68

9.4.5 Configuration of Database Rollforward Logs on the app.telemetry Server ___________ 70

9.5 Configure Sendmail to Forward E-mails ___ 71

9.6 Fabasoft app.telemetry with SELinux ___ 72

9.7 Using PostgreSQL Database for app.telemetry Server on Microsoft Windows ___________ 73

9.8 Configuration of PostgreSQL Database for app.telemetry Server on Linux ______________ 73

9.9 Installing Fabasoft app.telemetry on RHEL/CentOS 7 ______________________________ 75

9.9.1 Start/Stop/Status of Daemons ___ 75

9.9.2 Enable Autostart of Daemons __ 75

9.9.3 Customize Startup Parameters (Core Dump Settings) ___________________________ 75

 Installation Guide for Fabasoft app.telemetry 2015
Update Rollup 3

6

1 Introduction

The Fabasoft app.telemetry consists of four software components:

 Fabasoft app.telemetry server – including the following services/daemons

o Server

o Worker

o EComm

o Web service

 Fabasoft app.telemetry agent

 Fabasoft app.telemetry web browser client (hosted as web service on app.telemetry server)

 Fabasoft app.telemetry Software-Telemetry web service (also known as WebAPI)

A Fabasoft app.telemetry installation is always made up of one central Fabasoft app.telemetry
server (which can be installed either on Linux or Microsoft Windows) and many Fabasoft
app.telemetry agents (one agent for every target server – could be Linux or Microsoft Windows).

Heterogeneous installations with Fabasoft app.telemetry agents on different platforms are
supported.

The Fabasoft app.telemetry Software-Telemetry web service (also known as WebAPI) is required for
End-2-End instrumented applications using the Fabasoft app.telemetry JavaScript SDK which will
send the telemetry data from an instrumented web page to the web service which will forward the
data to the app.telemetry agent. In such an environment the app.telemetry web service has to be
installed on some agent platforms additionally to the agent package.

Fabasoft app.telemetry also provides some optional software components that might be installed as
required for some special use cases:

 Fabasoft app.telemetry web server instrumentation modules (Apache, IIS)

o mod_telemetry (instrumentation module for Apache)

o telemetry_iis (instrumentation module for IIS)

 Fabasoft app.telemetry syslog forwarder (rsyslog event forwarder module)

 Installation Guide for Fabasoft app.telemetry 2015
Update Rollup 3

7

2 Prerequisites for Linux Systems

Before starting the installation of Fabasoft app.telemetry, some additional software components are
required and have to be installed.

Verify that none of the following software packages are missing on the target servers or install the
missing RPMs from the distribution installation media (Linux install DVD).

2.1 Prerequisites for Fabasoft app.telemetry Agent

 net-snmp-libs (installed by default OS installation)

 net-snmp (optional – only required to monitor SNMP values)

o requires: lm_sensors

 curl

 libxml2

 libgcrypt

2.2 Prerequisites for Fabasoft app.telemetry Web Service

 Web server (Apache)

o httpd

o apr

o apr-util

 curl

2.3 Prerequisites for other app.telemetry Modules

The app.telemetry Apache module (mod_telemetry) requires the Apache web server and all of its

requirements.

The app.telemetry syslog forwarder module is only available for RHEL/CentOS 6.x and 7.x and

requires the rsyslog daemon (rsyslog >= 5.8.10).

2.4 Additional prerequisites for Fabasoft app.telemetry Server

Note: The Fabasoft app.telemetry server installation also requires fulfilling all Fabasoft
app.telemetry agent prerequisites.

 Web server (Apache)

o httpd

o apr

o apr-util

 postgresql-libs

 net-snmp-utils (optional – for easier testing of SNMP configuration)

 curl

 minizip

 Installation Guide for Fabasoft app.telemetry 2015
Update Rollup 3

8

2.5 Configuration of SNMP

The SNMP protocol is required to query essential system information from Linux-based systems. So
a correctly configured net-snmp is needed on every Linux-based Fabasoft app.telemetry agent.

Configure the SNMP read community with your desired secure passphrase. (The write-community is
not required by Fabasoft app.telemetry software.)

The default configuration file is located in /etc/snmp/snmpd.conf

Configuration (/etc/snmp/snmpd.conf)

1. possibility: by using global read-only community

rocommunity <passphrase>

default: rocommunity public

---------------- OR -----------------

2. possibility: by using system views

com2sec notConfigUser default <passphrase>

default: com2sec notConfigUser default public

group notConfigGroup v1 notConfigUser

group notConfigGroup v2c notConfigUser

view systemview included .1

view systemview excluded .1.3.6.1.2.1.6

access notConfigGroup "" any noauth exact systemview none none

Some SNMP versions have troubles traversing the complete SNMP tree and may crash (if for
example file system mount points are unavailable). A solution is to exclude the following SNMP sub
tree: 1.3.6.1.2.1.6.

Example

view systemview included .1

view systemview excluded .1.3.6.1.2.1.6

You should enable automatic startup of SNMP daemon on every server and restart the daemon to
get the changes take effect.

Autostart SNMPD Daemon

chkconfig --level 345 snmpd on

/etc/init.d/snmpd restart

 Installation Guide for Fabasoft app.telemetry 2015
Update Rollup 3

9

3 Installation on Linux Systems

Install the Fabasoft app.telemetry packages from the product media using the rpm-command. The

server (apptelemetryserver-<version>.rpm) has to be installed once in the infrastructure and the

agent (apptelemetryagent-<version>.rpm) on every system (also on the server).

The Fabasoft app.telemetry server installation also requires a locally installed app.telemetry agent
and Software-Telemetry web (apptelemetryweb) package.

Since version 2012 Fall Release Fabasoft app.telemetry supports SELinux on RHEL/CentOS 6 and
with Fabasoft app.telemetry 2015 also RHEL/CentOS 7. For other platforms SELinux must be turned
off in order to use Fabasoft app.telemetry.

Note: Installing Fabasoft app.telemetry on a RHEL/CentOS 6 or 7 system with enabled SELinux will
also install the SELinux files for Fabasoft app.telemetry and load the SELinux policy on the target
system. Note: Loading SELinux policies may take a while and will slow down the RPM installation
process!

For more details about Fabasoft app.telemetry with SELinux see chapter 9.6 “Fabasoft
app.telemetry with SELinux” in appendix.

Since Fabasoft app.telemetry 2015 we support the installation on a RHEL/CentOS 7 platform. The
installation procedure is very similar than before. But the daemon startup is now handled by the
SystemD tools. For more details on installing or using Fabasoft app.telemetry on RHEL/CentOS 7
see chapter 9.9 “Installing Fabasoft app.telemetry on RHEL/CentOS 7” in appendix.

3.1 Installation of Fabasoft app.telemetry Agent

Installation (Linux Shell)

[root@localhost]# rpm -ihv apptelemetryagent-<version>.<os>.x86_64.rpm

Preparing... ### [100%]

 2:apptelemetryagent ### [100%]

Starting apptelemetryagentd: [OK]

The daemon is started automatically after the installation.

3.1.1 Installation of Fabasoft app.telemetry Software-Telemetry Web Service

Optionally you can install the Fabasoft app.telemetry Software-Telemetry web service (also known
as WebAPI) additionally on some agent platforms. (This web service is required for End-2-End
instrumented applications using the Fabasoft app.telemetry JavaScript SDK.)

The RPM package for the Fabasoft app.telemetry Software-Telemetry web service is located in the

installation folder TelemetryWeb and is named apptelemetryweb-<version>.<os>.x86_64.rpm.

Installation (Linux Shell)

[root@localhost]# rpm -ihv apptelemetryweb-<version>.<os>.x86_64.rpm

Preparing... ### [100%]

 2:apptelemetryweb ### [100%]

 Installation Guide for Fabasoft app.telemetry 2015
Update Rollup 3

10

3.1.2 Installation of additional (optional) Fabasoft app.telemetry Modules

Optionally you can install the Fabasoft app.telemetry Apache module (mod_telemetry) from the
installation folder Telemetry-Modules which provides instrumentation for general requests handled

by the Apache web server. If the requests are not part of another application instrumentation you
can configure a new Software-Telemetry log pool for the Apache web server (with the application

filter “Apache”) including the specific log definition file …/Telemetry-

Modules/LogDefinitions/webserver-logdefinition-apache.xml.

Another optional app.telemetry module is the syslog forwarder module required for capturing syslog
events on behalf of a normal Software-Telemetry log pool. This feature requires the Linux syslog

daemon rsyslog (>= 5.8.10) and is only available for RHEL/CentOS 6 or 7. In order to get syslog

events as telemetry requests you have to create a new log pool with the specific application filter

“Fabasoft app.telemetry” as application name and “Syslog Forwarder” as application tier name

and import the specific log definition file …/Telemetry-

Modules/LogDefinitions/syslogforwarder-logdefinition.xml.

3.2 Installation of Fabasoft app.telemetry Server

Installation (Linux Shell)

[root@localhost]# rpm -ihv apptelemetryagent-<version>.<os>.x86_64.rpm

apptelemetryserver-<version>.<os>.x86_64.rpm apptelemetryweb-

<version>.<os>.x86_64.rpm

Preparing... ### [100%]

 1:apptelemetryagent ### [33%]

 2:apptelemetryweb ### [67%]

 3:apptelemetryserver ### [100%]

Run "/opt/app.telemetry/bin/serversetup.sh" to configure the

app.telemetry server the first time.

The daemons are started automatically after the installation.

Then call the setup script to configure the Fabasoft app.telemetry server for initial use and follow the
instructions on screen. This script will set up the system as described in the following sub chapters
automatically.

Setup (Linux Shell)

/opt/app.telemetry/bin/serversetup.sh

Note: The configuration steps described in the following sub chapters are only informational and for
special needs (a default configuration is already performed by the serversetup.sh script).

3.2.1 Loading Fabasoft app.telemetry License

Put the Fabasoft app.telemetry license on the Fabasoft app.telemetry server into the directory
/etc/app.telemetry and save it with the name license.lic.

After a valid license is stored in /etc/app.telemetry/license.lic restart the Fabasoft

app.telemetry server: /etc/init.d/apptelemetryserverd restart

 Installation Guide for Fabasoft app.telemetry 2015
Update Rollup 3

11

3.2.2 Configuration of Apache Web Server for Fabasoft app.telemetry

This chapter describes the configuration steps of the Apache web server for the Fabasoft
app.telemetry server for a manual installation. The serversetup.sh script will perform these basic

configuration steps automatically with default settings.

3.2.2.1 Starting Apache Web Server

The Fabasoft app.telemetry server requires the Apache web server to be installed, configured and
running. Start the Apache web server (httpd) and set it up for automatic startup:

Autostart Apache Daemon

chkconfig --level 345 httpd on

/etc/init.d/httpd start # or restart

3.2.2.2 Configuration of Basic Authentication

Open the file /etc/httpd/conf.d/apptelemetrywebserver.conf and add these lines inside the

<Directory>-tag:

Configuration (/etc/httpd/conf.d/apptelemetrywebserver.conf)

AuthType Basic

AuthName "app.telemetry Basic Authentication"

AuthUserFile /etc/app.telemetry/htpasswd

AuthGroupFile /etc/app.telemetry/htgroup

Require group apptelemetryadministrators apptelemetryusers

 apptelemetrydashboardusers apptelemetrylogpoolusers

 apptelemetrywebformusers

After adding these lines you must create an htpasswd file and specify valid user credentials by

means of running the following command.

Setup User Credentials (Linux Shell)

htpasswd -c /etc/app.telemetry/htpasswd username

After finalizing these actions you have to restart the Apache web server (httpd).

3.2.2.3 User/Group Permissions

The app.telemetry group privileges separate user permissions with a membership check of the login
username against the following Apache groups:

 apptelemetryadministrators: full administrative access

 apptelemetryusers: read-only access to all data

 apptelemetrydashboardusers: only able to view dashboards assigned to this group and

public-marked dashboards

 apptelemetrylogpoolusers: only able to view telemetry data and reports for log pools

assigned to this group

 12

 apptelemetrywebformusers: only able to view feedback inbox, forms and website configuration

Example of group file (/etc/app.telemetry/htgroup)

apptelemetryadministrators: user1 user2

apptelemetryusers: user5 user6 user7

apptelemetrydashboardusers: user8 user9

apptelemetrylogpoolusers: user10 user11

apptelemetrywebformusers: user12 user13

All those user accounts have to be created via the htpasswd command in the htpasswd file as

mentioned above. Changes in the group membership require reloading the Apache configuration.

Note: User accounts with domain login (e.g: “APM\pool1”) have to be listed in the group file with
escaped backslash (\\)

Example of group file with escaped domain-accounts (/etc/app.telemetry/htgroup)

apptelemetryadministrators: root admin

apptelemetrylogpoolusers: loggy APM\\pool1 APM\\pool2

limitedaccess: APM\\pool1 APM\\pool2

3.2.3 Enable Data compression

To enable data compression between Fabasoft app.telemetry web server and the Fabasoft
app.telemetry client add the following lines to the apache configuration of the Fabasoft app.telemetry

server (/etc/httpd/conf.d/apptelemetrywebserver.conf) inside the directory directive:

Configuration of Data Compression (/etc/httpd/conf.d/apptelemetrywebserver.conf)

<Directory "/opt/app.telemetry/web">

 ...

 <IfModule mod_deflate.c>

 SetOutputFilter DEFLATE

 </IfModule>

</Directory>

 13

4 Prerequisites for Microsoft Windows Systems

Before starting the installation of Fabasoft app.telemetry, some additional software components are
required and have to be installed.

Verify that none of the following software components are missing on the target servers or install the
missing components from the distribution installation media (Microsoft Windows install CD/DVD).

4.1 Prerequisites for Fabasoft app.telemetry Agent

 Microsoft XML Core Services 6.0 (MSXML)

o (required for web service availability checks only)

4.2 Prerequisites for Fabasoft app.telemetry Web Service

 Web server (Microsoft Internet Information Services – IIS)

4.3 Prerequisites for Fabasoft app.telemetry Server

 Microsoft XML Core Services 6.0 (MSXML)

 Web server (Microsoft Internet Information Services – IIS)

o For details see the detailed chapter for the appropriate platform in the appendix

 14

5 Installation on Microsoft Windows Systems

Install the Fabasoft app.telemetry packages (MSI setup packages) from the product media using the

setup.exe files. The Fabasoft app.telemetry server has to be installed once in the infrastructure and

the Fabasoft app.telemetry agent on every other system (not on the server where the agent is
already included in the server package).

Notice: The setup.exe program may perform some upgrade tasks additionally to the MSI package,

so it is important to start the setup by calling the setup.exe file of the appropriate installation

directory.

5.1 Installation of Fabasoft app.telemetry Agent

1. Use the setup wizard by invoking the setup.exe installation file from the “Agent” installation
directory (for the appropriate windows architecture). If the “User Account Control” (UAC) asks for
permissions to execute the setup, allow the setup execution with “Yes”.

2. Specify the target location of the agent installation (or keep default location).

3. Finish the installation and the agent should work without any additional configuration.

 15

4. The Fabasoft app.telemetry agent service is started automatically after the installation.

5.1.1 Fabasoft app.telemetry Agents on Microsoft Windows Cluster Nodes

The Fabasoft app.telemetry Agents enumerates the cluster groups on startup to provide the virtual
hosts according to the cluster configuration. Therefore the cluster configuration has to be valid upon
Fabasoft app.telemetry Agent startup and the Fabasoft app.telemetry Agent has to be restarted after
changes to structure or IP addresses of cluster group have been made.

Since the cluster configuration under Microsoft Windows Clusters is provided by the “Cluster
Service” process, it is necessary to establish a service dependency between “Fabasoft
app.telemetry Agent” service and the “Cluster Service”. This can be done by the following command
line:

sc config apptelemetryagent depend= ClusSvc

Since the cluster service will take some time until the cluster configuration will be available, the
Fabasoft app.telemetry Agent will wait for the configuration to be available (implemented in Fabasoft
app.telemetry 2013 Summer Release). The timeout for this startup delay is 30 seconds and may be
configured setting the "ClusterStartupTimeout” DWORD registry key under
“HKLM\SOFTWARE\Fabasoft app.telemetry\Agent” to the desired amount of seconds.

In Fabasoft app.telemetry Versions prior to 2013 Summer Release the Fabasoft app.telemetry Agent
has to be restarted after cluster startup finished.

5.1.2 Installation of Fabasoft app.telemetry Software-Telemetry Web Service

Optionally you can install the Fabasoft app.telemetry Software-Telemetry web service (also known
as WebAPI) additionally on some agent platforms. (This web service is required for End-2-End
instrumented applications using the Fabasoft app.telemetry JavaScript SDK.)

1. The installation package for the Fabasoft app.telemetry Software-Telemetry web service is

located on the Fabasoft app.telemetry installation media in the folder “TelemetryWeb”. Invoke

the setup wizard by starting the setup.exe installation file.

 16

2. Specify the target location of the web service installation (or keep default location).

3. Finish the installation and the Software-Telemetry web service should run without any additional
configuration.

The Fabasoft app.telemetry Software-Telemetry web service is installed as global IIS handler
catching any requests to URLs ending with the pattern “web.telemetry”.

On Microsoft Windows Server 2003 (Internet Information Services 6) the Software-Telemetry web
service is installed as ISAPI extension with a configured application extension “.telemetry”.

 17

On Microsoft Windows Server 2008 or higher (Internet Information Services 7+) the Software-
Telemetry web service is installed as native IIS module with a global handler mapping for
“web.telemetry”.

The correct installation of the Software-Telemetry web service can be verified by navigating with a
web browser client to any URL ending with “web.telemetry” on this system. The result should be a
status page.

 18

5.2 Installation of Fabasoft app.telemetry Server

1. Use the setup wizard by invoking the setup.exe installation file from the “Server” installation

directory (for the appropriate windows architecture).
Note: The Fabasoft app.telemetry server package includes the app.telemetry agent and also
includes the Software-Telemetry web service, so on the server platform you only have to install
the server package!

2. Specify a Fabasoft app.telemetry license file (.lic) for the product version you are going to install.

3. Specify the target location for the installation (or keep default location) and start the installation.

4. Finish the installation.

 19

5. The Fabasoft app.telemetry server service and all other services belonging to the server
installation (agent, ecomm, worker) are started automatically after the installation.

The setup has created a new virtual directory “apptelemetry” in the Internet Information Services
“Default Web Site” and also has registered the new “apptelemetry” native IIS module (on Microsoft
Windows Server 2008 or higher)

 20

To test whether the Fabasoft app.telemetry web services is up and running, open the following URL

in the web browser: http://localhost/apptelemetry/server/webserver.dll

Last but not least define the access permissions for client users to work with Fabasoft app.telemetry.
All users that need to have access must be member of one of the following Microsoft Windows user
groups:

 “app.telemetry Administrators”: full administrative access

 “app.telemetry Users”: read-only access to all data

 “app.telemetry Dashboard Users”: only able to view dashboards assigned to this group and

public-marked dashboards

 “app.telemetry Logpool Users”: only able to view telemetry data and reports for log pools

assigned to this group

 “app.telemetry Web Form Users”: only able to view feedback inbox, forms and website

configuration

These groups are created by the setup process and the user account that has started the setup will
be automatically added to the administrative group.

The default authentication methods for the web service are “Integrated Windows authentication” and
“Basic authentication”. These settings can be changed in the “Directory Security” tab of the virtual

directory “apptelemetry”.

 21

5.2.1 Loading Fabasoft app.telemetry License

The Fabasoft app.telemetry server setup will ask for a license file only for a new installation and if no
license file is present in the target directory.

If you want to update or install the license file later on, put the Fabasoft app.telemetry license on the

Fabasoft app.telemetry server into the directory “C:\ProgramData\Fabasoft app.telemetry\” and

save it with the name license.lic.

After a valid license is stored in “C:\ProgramData\Fabasoft app.telemetry\license.lic” restart

the Fabasoft app.telemetry server with the Microsoft Windows Services manager.

 22

6 Start and Use the Fabasoft app.telemetry Client

The Fabasoft app.telemetry web browser client will be automatically installed with the Fabasoft

app.telemetry server setup in the virtual directory /apptelemetry/.

You can access Fabasoft app.telemetry with your web browser:
http://<app.telemetry Server>/apptelemetry/index.html

The URL for the Fabasoft app.telemetry web browser client has the following format:

 For normal HTTP-connection: http://<server-IP>/apptelemetry/index.html

 For secure SSL-connection: https://<server-IP>/apptelemetry/index.html

The virtual directory is by default “apptelemetry” as set up by the installer.

After these settings have been applied a startup infrastructure monitoring the Fabasoft app.telemetry
server itself is loaded.

 23

6.1 Configuration of Infrastructure

To configure applications, services, service checks and other parameters you have to switch the
client to the infrastructure “Configuration” page by using the “Configuration” button from the view
menu.

First of all you should configure some basic server properties by means of opening the edit dialog for
the “Server Settings” object:

 The “Name” will be used as window title in the web browser and can be used to separate
different app.telemetry installations more easily.

 The “URL” should include the full qualified host name of the app.telemetry server by which the
installation can be reached from every client, because this URL is also used for some direct links
to the installation (e.g. in notification e-mails).

 The “Default Database” is used everywhere where no specific database can be selected (e.g.
form feedbacks, counter state history)

 The “Default Timezone” is used for this installation as base time zone.

 The “Activity Statistics enabled” checkbox activates the Inspect Activity Statistics feature.

The Data Cleanup Settings help you to manage the data size of the app.telemetry Server.

 24

Software-Telemetry data is persisted on disk. Make sure to set “Data Expiration (days)”
appropriate to allow users to analyze their requests and to limit the size of the data to fit the disk
volume. On limited volumes you may even provide a “Data Size Limit (GB)” to remove data even
faster e.g. in heavy load situations.

Activity Statistics are aggregated on disk and are intended to be be kept longer than raw telemetry
data to provide long term load statistics of your systems. These data are independent of the
Software-Telemetry data. You may limit the available data pool by either setting a “Data Expiration
(days)” value or a “Data Size Limit (GB)”.

Fabasoft app.telemetry automatically records a history of status changes of all counters on the
default database. Set the “Data Expiration (days)” property to limit the amount of data stored.

With each counter check you can configure to record data in a database. Set the “Data Expiration
(days)” property to automatically delete old status values. This is a global setting, which is applied
to all counters.

Counter data is being kept in memory of the Fabasoft app.telemetry Server process to provide faster
response drawing your counter charts. Limit the amount of data using the “Data Online Timeout
(hours)” property to the duration required. To implement charts covering longer intervals (> 6 hours)
persist the counter data on database and the database will provide the values.

Generally the infrastructure objects support the following actions to be accessed on any selected
infrastructure object via a context menu which opens on right mouse click:

 Edit: all elements (except the root elements) can be edited in element-specific edit dialogs
opened after this action is clicked.

 New … Create a new object below the current selection.

 Cut: the currently selected object and store it in the clipboard.

 Copy: Store the currently selected object in the clipboard.

 Paste: Paste the object from the clipboard below the current selection (as child object).

 Delete: Delete the currently selected object and all children.
Note: any object depending on the current to be deleted object will be also deleted (a warning

message will list all the affected objects)

 25

Note: With Winter Release 2012 a multi-selection was introduced which makes the configuration
much easier. Just keep the CTRL-key pressed during selection of elements to select more than one
element of the same type (in the same container – with same parent). You can “cut”, “copy”, “paste”
and “delete” multiple elements (do not release the CTRL-key before pressing the action button).

 26

6.1.1 Creating Agents

The first step is to add the Fabasoft app.telemetry agents (that you should have already installed in
your infrastructure) by means of opening the “Agents” root group in the tree on the left side and
adding agent groups and new agents with the “New” actions from context menu.

Note: Do not create two agent objects for the same physical server. The second app.telemetry
agent opening a connection to the same agent will be marked as disconnected, because another
agent is already connected.

6.1.1.1 Set up SNMP Community for the Agent

Fabasoft app.telemetry agents that need to query counters using the net-snmp protocol use the
specified “SNMP community” to connect to the SNMP daemon. If the SNMP community is not set,

the default community “public” will be used. If the SNMP community is not set correctly for your

SNMP system, timeouts may degrade the performance of the Fabasoft app.telemetry agent.

6.1.1.2 Using Fabasoft app.telemetry Proxy Agent

Some situations require monitoring remote systems that do not have a Fabasoft app.telemetry agent
installed. For such situations another Fabasoft app.telemetry agent can be used as proxy agent to
perform remote calls using the net-snmp protocol.

In order to use this feature enter the remote network address of the target system that should be
monitored and select another agent as “Proxy agent” from the combo box. Then enter the “SNMP
community” to be used for the remote SNMP queries.

“Virtual host detection”: … to detect on which server a virtual machine (VM) is running

In order to use the “virtual host detection” feature you have to configure a proxy agent for the virtual
host server (VMware ESX Server, Microsoft Hyper-V) that is able to query the required fields (SNMP
counters) from that server defining the remote IP address of that virtual host server.

Note: If you turn on the virtual host detection, be sure that the SNMP service on the target virtual
host server (VMware ESX) is turned on and configured correctly, otherwise timeouts may degrade
the performance of the Fabasoft app.telemetry agent.

 27

6.1.2 Detection of Applications

Applications that are instrumented with the Fabasoft app.telemetry SDK and run on any system in
your infrastructure where also an installed and configured app.telemetry agent is running will register
themselves on the Fabasoft app.telemetry server and appear in the internal service group „New
Services” in the infrastructure.

These service groups and services can be moved to the desired point in the infrastructure by means
of cut and paste (via context menu actions in edit view).

6.1.3 Creating Service Checks

Every service should have at least one defined service check which is responsible for the status of
this service. Otherwise the state will stay at the value “OK”.

For creating a new service check you have to select the service for which the check should be
connected and use the “New Service Check” context menu action. A new dialog for selecting the
desired service check type will be displayed.

After selecting the service check type a type-specific dialog for defining the check properties will be
opened.

Enter the counter definition details (specific for that type) and switch to the check properties tab to
finish the definition of that service check.

Optionally service checks for counter types can also be defined with limits for warning and critical
state.

6.1.3.1 Syntax for Counter Limits

If the limit field is kept empty, the result state of this counter will always be OK returning the counter
value.

If warning and critical limits are defined the service check state will change to that state if the defined
limits match – that is if an “above” limit is set and the current value exceeds that limit.

Examples:

 Critical Limit: Below: 200 … if the value is 170 than the resulting state is critical

 Warning Limit: Above: 150 … if the value is 170 than the resulting state is warning

 28

 Warning Limits: Above: 50 and Below: 180

+ Critical Limit: Above: 200 … if the value is 170 than the resulting state is warning (but not

critical)

6.1.3.2 Using a Limit Duration

If you don’t want to get notified of each counter check value exceeding the limit, but only for those
that stay longer than a given time period out of the defined limit, you have to define a duration value
in seconds.

Duration is the value in seconds after which the state changes (if value exceeds the limit all this
time)

Example for “% Processor CPU Usage”

 Warning Limit: Above: 80 with Duration[sec]: 15 ... warn if value is higher than 80 for more

than 15 seconds. (requires a check interval smaller than 15 sec)

6.1.4 Special Service Checks and their Parameters

6.1.4.1 Counter Checks Using Existing Counter Definitions

Using a preexisting counter definition for a new service check is the easiest way to create one. Only
select the counter from the list.

The counter definitions can be modified and extended via the root group “Counter Definitions”.

6.1.4.2 Counter Checks Using Formula

Define a formula with references to protocol-specific counters in the following format:
{<protocol>:<targetvalue>}

For example:

 {snmp:.1.3.6.1.2.1.2.2.1.16.2}

 {winperf:\System\Threads}

Mathematical expressions with brackets () and operators (+,-,*,/) can be used.

The following mathematical functions are also available for converting values:

 delta() … calculates the difference between the last two values of a counter

 delta32() … calculates the difference between the last two values of a counter and permits

counter overflow on 32-bit raw-data

 delta64() … calculates the difference between the last two values of a counter and permits

counter overflow on 64-bit raw-data

 deltaPerSecond() … calculates the average per second over the last check interval

 delta32PerSecond() … calculates the average per second over the last check interval and

permits counter overflow on 32-bit raw-data

 delta64PerSecond() … calculates the average per second over the last check interval and

permits counter overflow on 64-bit raw-data

6.1.4.3 Linux /proc Counter Checks

Select the processor or the process and the desired counter to monitor.

These values are fetched from the Linux /proc file system.

 29

6.1.4.4 Linux Process Availability Checks

Select a desired Linux process from the list of currently running processes (on the remote Fabasoft
app.telemetry agent).

It is monitored if this process is running.

6.1.4.5 SNMP Counter Checks

Select an SNMP table, instance and counter from the lists to monitor.

The list contents are fetched from the remote Fabasoft app.telemetry agent.

Since 2013 Winter Release SNMP counters obtained from an SNMP table instance are stored in the
app.telemetry infrastructure with a special syntax to keep the selected named instance also after

possible table index changes: <FULL-OID>[“<named instance>”,<table-depth of index
column>, <OID of table-name column>]

Example for SNMP Counter: IF-MIB::ifTable > IF-MIB::ifInOctets > eth0

 FULL-OID (of desired counter): .1.3.6.1.2.1.2.2.1.10.2

 Named instance: "eth0"

 Table-depth/length of index column: 1

 OID of table-name column: .1.3.6.1.2.1.2.2.1.2

 … this results in the following special counter definition:
.1.3.6.1.2.1.2.2.1.10.2["eth0",1,.1.3.6.1.2.1.2.2.1.2]

Note: You can use these special OIDs also in counter checks using formulas or counter definitions
to be independent from table index changes in SNMP tables. In order to get this special OID for your
desired SNMP counter, just create a new SNMP counter, select the table, instance and counter from
the list boxes – save the counter check – open it again by means of using the “edit” button and look
up the SNMP OID field.

6.1.4.6 Web Service Availability Checks

To define an HTTP check fill in all required fields of the counter definition details tab:

 Target URL: http://.../

 Authentication settings:

o Anonymous Authentication

o Kerberos/Integrated Authentication

 On Microsoft Windows the service account is used for authentication (requires the agent
service to be run under a domain account).
Note: When changing the service account of the agent service, ensure that this account
has enough permissions for other checks (e.g. for Windows Performance Counters – be
member of “Performance Monitor Users” group) and to access all working directories used
by the agent service (e.g. file counter checks).

o Basic Authentication: with user name and password

o Certificate (for Linux-based app.telemetry agents):

 Define the certificate filename (client1.pem)

 Certificate has to be deployed manually to the target agent into directory:
/etc/app.telemetry/

 The p12-certificate has to be converted into pem-Format:

Certificate conversion: openssl pkcs12 –in user.p12 –clcerts –out user.pem

 30

o Certificate (for Windows-based app.telemetry agents)

 Define the certificate CN name (clientcert)

 The certificate to be used has to be installed in the personal certificate store of the service
user account of the Fabasoft app.telemetry agent. So if you want to define a HTTP Check
using certificates, you have to change the service account of the agent service to a user
account (the local system account has no personal certificate store associated) and import
the certificate into the personal certificate store of that user.
Note: Be careful when changing the service account of the agent service – for details see

previous note.

 To select a certificate out of multiple installed certificates, specify the CN of the certificate
in the certificate parameter. Apart from that situation the certificate parameter is optional.

 Optional using an HTTP-Proxy

 Display Result Value: you can display different result values in the service check message

column

 Check Retry Count: default = 3 … this is the HTTP-retry count performed if the check fails
(without any delay)

 Check Server Certificate: When checked, a SSL certificate will be validated and the check will
fail if the certificate is not valid. Due to a bug in the underlying libcurl library each request may
leak memory on the agent process performing web service checks with this option activated
(LINUX only).

6.1.4.7 Microsoft Windows Performance Counter Checks

Select a Microsoft Windows performance counter from the dynamically filled lists for object, instance
and counter.

6.1.4.8 Microsoft Windows Service Availability Checks

Select the desired Microsoft Windows process from the list of currently running processes (on the
remote Fabasoft app.telemetry agent).

It is monitored if this service is in running state.

6.1.4.9 Microsoft Windows Cluster Resource Availability Checks

If the Fabasoft app.telemetry agent is running on a Microsoft Windows cluster node you can select
one of the dynamically filled Microsoft Windows cluster resources to monitor.

6.1.4.10 Red Hat Cluster Suite Service Availability Checks

If the Fabasoft app.telemetry agent is running on a Red Hat cluster node you can select one of the
dynamically filled Red Hat cluster suite services to monitor.

6.1.4.11 Log Pool Statistics Counter Check

Select a specific log pool and get information about the performance of the requests inside the log
pool.

You can limit the time range of requests regarded for this check calculation (in minutes) or use all
available data from online log pool (in memory).

Decide whether to calculate the average request duration or the percentage of requests faster than
<x> seconds.

 31

Since Fabasoft app.telemetry 2012 Summer Release you can exclude requests from this calculation
with a filter defining the maximum request duration (in seconds). All requests that last longer as this
defined limit will not be regarded for this check calculation.

Since Fabasoft app.telemetry 2014 Fall Release a message “No Requests” is being displayed
instead of no value when no requests have been processed for the given interval.

6.1.4.12 TCP Ping Availability Checks

Enter the target host (IP address or resolvable DNS hostname) and target port (TCP port number)
you want to check. Additionally you can choose whether to display only the state or also the duration
(in milliseconds) the check did use. Optionally you can define data to be sent with the TCP package.

6.1.4.13 ICMP Ping Availability Checks

Enter the target host (IP address or resolvable DNS hostname) you want to check and optionally
specify a timeout (in seconds). Additionally you can choose whether to display only the state or also
the duration (in milliseconds) the check did use.

6.1.4.14 Counter Check Using File System

In some situations counter values are much more complex to obtain or may be the result of other
program executions. Therefor app.telemetry provides the “counter check using file system” to check
and read a value from a text file on the local file system of the app.telemetry agent host.

All text files readable by the app.telemetry agent user located in the following directory are regarded
as possible file counter check results and can be selected from a list box while creating or editing a
service check of type “counter check using file system”:

 Microsoft Windows (Agent platform): <All Users – APPDATA>\Fabasoft
app.telemetry\status

o Windows 2003: C:\Documents and Settings\All Users\Application Data\Fabasoft
app.telemetry\status

o Windows 2008: C:\ProgramData\Fabasoft app.telemetry\status

 Linux (Agent platform): /var/opt/app.telemetry/status

The first value in the first line of the status file will be used as counter check result value. Only
numeric integer values are supported as result values. Decimal fraction parts will be cut off. Invalid
value formats as well as textual values will be interpreted as simple text and cannot be validated
with counter limits.

The validity of counter check results based on the change timestamp of the status file can be
defined with the following two service check properties:

 Check Interval [sec]: the interval the value is updated from the status file (should be

approximately the same as the status file is updated or at least twice often)

 Value Expiration Factor: the number of check intervals the result value is regarded as valid
<check interval> x <value expiration factor> = <number of seconds> of max-age

of status file (if the status file timestamp is older than that amount of time it is regarded as

invalid and the counter check status is changed to warning “last value too old”. This mechanism

helps detecting problems with the update-script that generates and updates the status file.

 32

6.2 Using Software-Telemetry Log Pools and Top X Reports

Create a new “Log Definition” in the edit view by means of using the context menu on the “Log
Pools” root group.

Enter all required fields and define the desired log definition for your application.

Set a name for the definition and define for which applications (Application Filters) the logs should
be collected.

Note: The application filter definition for different log definitions should not overlap, because the first
log definition will get the events that match the filter and the others will not.

Specify the database where you want to store the Software-Telemetry logs. If the database
persistence of the telemetry requests is not required specify “[do not write to database]”.

The amount of requests held in memory is set by the number control above (it is defined in minutes
with a maximum of 120 minutes = 2 hours). If you want to view the requests for a longer period in
the online log view, you need to define a database for persisting the logs.

Select the desired recording level for permanent Software-Telemetry data collection (outside of
manually started sessions).

 33

To turn on Top X reports for that log pool you need to set the property “Enable Statistic Reports” to
either “Precalculated Statistics” or “On Demand Statistics” and you also need to have a log definition
with statistical flags (measures, dimensions) defined.

“Precalculated statistics” are calculated for 10-minute intervals all the time and are stored in
separate database tables so Top X reports on a big amount of telemetry data are much faster, but
this type of statistics will also use more memory and disk space!

“On Demand Statistics” will be calculated only when required for the requested time range directly
on the database). A database must be defined in order to use “On Demand Statistics”!

Specify the log pool columns structure of your application by means of switching to the second tab
(“Log Definition Columns”) selecting the log definition XML file from the file system and finally
pressing the “Import”-button. This application log columns definition file (XML) is distributed by the
application vendor of the instrumented application.

Note: Reported feedback sessions (reported with the Report-SDK function from inside any
application) will only be processed if there exists any log pool for that application that invoked the
report function (by means of a matching application filter) or at least a default log pool without any
application filter restrictions. Such reported sessions can be automatically forwarded to a defined
service desk (if defined with the drop-down box) – each reported session will be forwarded to that
service desk (if defined).

 34

6.2.1 Top X Report / Drill-Down Analysis

After you have configured a Software-Telemetry log pool with a valid log definition (application log
columns including dimension and measures flags) and the “Enable Statistic Reports” flag is turned
the Top X report view can be used to analyze the performance and bottlenecks of your instrumented
application.

Switch to the Application view select the desired log pool and “Go to report view of this log pool”.

On the report view you have to select any dimension you are interested in and report time range and
start the calculation (which may require some time to be calculated depending on the data amount
and time range).

The resulting report will contain all request of that time range grouped for same values of the
selected dimension.

For a drill-down analysis you can select one row and add this dimension as filter value (by means of
using the context menu action “Add Filter”). Afterwards change the selected dimension to another
interesting dimension and recalculate the report via the “START” button. To view the request of a
selected report row double-click the row to switch to the telemetry view applying all filters according
to the selected row.

 35

6.2.2 Configure a Database for Software-Telemetry Logs

On Linux systems specify the credentials and connection parameters for the PostgreSQL database.
The PostgreSQL database must be set to a valid authentication mode – either set to local trusted

access (“trust”) or to password based authentication (“password”).

On Microsoft Windows systems choose integrated or basic authentication, but basic authentication
is not enabled on Microsoft SQL Server by default.

Define the database connection in the following format:
<servername>\<SQL-Server-Instance>

For example: “.\SQLEXPRESS”: for local Microsoft SQL Server Express Edition.

Since version 2013 Summer Release the app.telemetry Server also supports the PostgreSQL
database on Microsoft Windows (to be able to use a free and unlimited database). For details on
how to install, configure and use PostgreSQL for Microsoft Windows see appendix chapter 9.7
“Using PostgreSQL Database for app.telemetry Server on Microsoft Windows”.

6.2.3 Filtered Log Pools

With Version 2014 Winter Release the filter rules for “Filtered Log Pools” have been reworked for
easier editing and to support more complex filter expressions. With filtered log pools you can monitor
and work on a specific subset of requests. A filtered log pool is based on a normal Software-
Telemetry log pool and defines additional filter criteria. Filtered log pools store their subset of filtered
requests in a separate database table therefor statistical analysis of filtered log pools also work as
expected on that subset of data.

You can create a new “Filtered Log Pool” from inside the edit view by creating a new object below
an existing base log pool or directly from the telemetry view by saving an existing filter set to a new
or to an existing filtered log pool.

 36

Filter Definition:

The filter rules consist of a list of filter expressions which can be added or modified with a special
sub dialog providing input hints and a list of properties (active, accept/deny, negate, comment). Any
existing old filter expressions will be transformed into the new format and shown as “default” rule.

All incoming requests are checked against the filter rule chain from the top to the bottom. The first
matching “accept”-rule will accept the request and stop checking any further rules in the chain. Note:
You need at least one “accept”-rule at the bottom of the chain otherwise the incoming requests will
not be accepted. Requests that are accepted by the filter rule chain are copied into the filtered log
pool. The filter expressions can contain any column of the base log pool columns.

For easier filter definition you can try the effect of filters on the base log pool in the telemetry view
and copy them over to the desired filtered log pool by means of using a sub-menu action of the
“Save to …” button.

Previously the filters have only supported a single equal comparison. We have removed this
constraint by re-implementing the filters as full-featured custom filters that can be modified and
combined on demand.

The filter rules for several different columns are connected with the AND-operator (&) which means
every filter-rule must be fulfilled. A single filter rule can either be a simple expression or can now
also be formed as complex rule with more than one expression. Those sub-expressions are by
default connected with the OR-operator (match any rule) but can also be configured as AND-
connected term (match all rules).

Filters can be added as before by selecting a single row (on report view) or a single table cell (on
telemetry view) and pressing the “Add Filter” button or context menu entry. This action immediately

 37

adds the filter to the filter bar with a default comparison operator (normally “=”). When adding a
second filter value for the same column the existing filter rule for that column will be extended with a
second OR-connected term.

In order to modify or extend an existing filter rule, just hit the edit button in the right actions area of
the filter rule bar and an “Edit Filter Expression” dialog will be opened. This filter dialog is limited to
the filter column the filter was defined for but can contain one or more filter expressions with different
comparison operators and different values. Based on the column data type different operators and
value hints are supported.

Special Data Type Handling:

 Text values (e.g. Loginname): support equals comparison, some kind of contains operators,
regular expressions and auto-complete

 Numeric values (e.g. sendbytes): support numeric comparison (=, >, <, …)

 Duration values (e.g. readtime): are formatted in milliseconds (ms) and support nearly the same
numeric operators as numeric values (except equals comparison because of the inaccuracy of
the high resolution time values)

 Date/Time values: are formatted as human readable date/time entries and are presented in a
date/time-input control for easier date/time input. This type supports ordered comparison (=, >,
<, …)

 Fabasoft Object values (e.g. dstappview): are using internal COO-address formatting rules as
well as name-resolution via fscdata.xml. The display value of the filter is the object name if
available. The auto-complete input will allow you to find the appropriate Fabasoft object with a
prefix-match. Because of the complex internal handling only equal-comparison is possible for
that type.

 38

6.2.4 View on Log Pools

With Version 2014 Summer Release a new extended type of log pool – the “View on Log Pool” was
introduced. This new view log pool serves as the name implies as logical view on the base log pool
with some special conditions.

A view log pool can be created on any other log pool by means of selecting the desired base log
pool and creating a new “View on Log Pool” using the context specific menu button. You can specify
a view filter expression based on any dimension column defining the condition which requests are
shown in the view. Additionally to normal literal filter expressions a special dynamic value
placeholder “$username” can be used to limit a view on only those requests produced by the user
itself.

Example: In order to allow your developer team members access to telemetry requests or
feedbacks of their own the administrator has to create a new view on the base log pool, limit the
access to an access group containing the developer accounts and create a view filter restricting the
login name column the dynamic $username filter value.

Additionally a privileged user can delegate any feedback (he has access to) to another user (support
team, developer, …). Just select a desired feedback on the Inbox view, click the “Route to … User”
toolbar button and add the desired login name of the target user who you want to give access to.
This dialog can also be used to remove access delegation rights again.

 39

6.2.5 Syslog Log Pools

Syslog log pools are a way to handle a big amount of syslog entries in a well-defined and structured
way using the power of Software-Telemetry log pools in combination with powerful filter rules within
filtered log pools.

In order to use Syslog log pools you have to install an app.telemetry syslog forwarder module on
every target system you want to capture syslog entries from. For more details on prerequisites and
installation instructions see the appropriate chapters above.

Once this apptelemetrysyslogforwarder daemon is configured and started you have to configure a
new Software-Telemetry log pool (app.telemetry client - edit view) and set up the filters to “Fabasoft
app.telemetry” as application name and “Syslog Forwarder” as application tier name. With the
“Permanent Software-Telemetry Log Level” field you can configure the amount/severity of log entries
to be captured (e.g.: with level “Detail” you will also get “Informational” log entries but not those of
“Debug” severity).

In order to reduce the memory usage for that log pool you should set up a database for persisting
the syslog entries and set the limit for in-memory requests to a very low value as well as the setting
for the statistics calculation to “On Demand Statistics”. A predefined log definition for that log pool is

also available within the KIT (…\Telemetry-Modules\LogDefinitions\syslogforwarder-

logdefinition.xml) that should be imported via the 2nd tab (Log Definition Columns).

After you have set up your syslog log pool you can watch incoming syslog entries as telemetry
requests in the created log pool and you also can analyze the entries via the report view.

In order to reduce the set of log entries you can create a filtered sub log pool with a defined set of
filter rules (supporting complex expressions as well as regular expressions).

6.2.6 Microsoft Windows Eventlog Forwarder

Just like the syslog forwarder on linux, Fabasoft app.telemetry provides a Microsoft Windows service
to read Eventlog entries. In order to install this service start the eventlogforwarder-setup.exe from

 40

the app.telemetry\Telemetry-Modules\WINDOWS_X64 folder of the Fabasoft app.telemetry

installation package.

In order to configure a log pool receiving the eventlog data, create a new Software-Telemetry Log
Pool, select “Fabasoft app.telemetry” as the Application and “Eventlog Forwarder” as the Application
Tier. Choose a Permanent Software-Telemetry Log Level to filter event logs based on the event

level. Import the eventogforwarder_logdefinition.xml from the LogDefinitions folder into the

Log Definition Columns will provide the common properties of the events in the request view. Create
Filtered Log Pools or View Log Pools to filter eventlog entries as needed.

By default the Fabasoft app.telemetry Eventlog Forwarder will read events from the System and the
Application source. In order to read event from other sources use the Registry Editor to add an

additional key under HKLM\SOFTWARE\Fabasoft app.telemetry\Eventlog Forwarder and add a

String Value named path holding the Name of the event log source.

The bookmark property is used by the eventlog forwarder to store the bookmark to the last entry
which has been forwarded so that it knows where to continue reading data even if the service is
restartet. You may force the retransmission of all entries by deleting the bookmark and restarting the
eventlog forwarder service.

6.3 Inbox for Incoming Feedbacks

With version 2013 Fall Release a new view called “Inbox” was introduced showing any incoming
feedbacks (also known as reported sessions sent by an instrumented application via the reporting
API calls) as structured list with a quick preview of containing meta data (including a screenshot if
available). The feedbacks will still be listed in the as reported session on the application log pool
detail page.

The feedbacks are grouped by the instrumented application which sent the feedback. If there does
not already exist a form log pool for an incoming feedback a new auto-generated form log pool will
be created which cannot be designed via the forms designer.

Note: A Software-Telemetry log pool for the instrumented application (which sends the feedback)
must exist in order to get feedbacks from the application.

 41

6.4 Feedback Forms Designer

Since version 2013 Fall Release a graphical forms designer was added to the on-premise version
which helps you to design full-featured feedback forms by means of drag&drop fields into a form and
customize the text, colors and styles.

In order to use these new feedback forms you have to follow the steps below:

1. Design a new form

1.1. Navigate to the “Edit” view inside the app.telemetry client

1.2. Select the infrastructure group “Forms Log Pools” and click the menu action “New Forms
Log Pool” (or “Design” if you already have an existing designed form).

1.3. Design your form

1.3.1. Configure the base settings of your form (title, styling, fonts, colors, logo,
background, …) by means of using the “Customize Form” button.

1.3.2. Add input fields to your form by means of dragging some of the available form
controls from the left side to the form preview.

 42

1.3.3. Enter a name and optionally a description and save the form with the “OK” button at
the bottom.

2. Software Update:

2.1. Update all app.telemetry software (Server, Agent, WebAPI) in your infrastructure to 2013
Fall Release or later.

2.2. Update the JavaScript SDK (softwaretelemetry.js) used by your instrumented application
(e.g. Folio web client) to the latest version shipped with the app.telemetry software
package (can be found in the folder “Developer\JavaScript”). This update (to 2013 Fall

Release or later) enables the SDK to load the feedback dialog resources from the
WebAPI.

3. Enable the new feedback form (Form Log Pool) as report dialog for your instrumented
application:

3.1. Either by assigning the “Forms Log Pool” as default form for a “Software-Telemetry Log
Pool” (of an instrumented application) by means of using the “Set as default Form” menu
action.
Note: This assignment of a default form for a log pool will replace any standard SDK
dialog with the new designed form.

3.2. Or by manually adding the new “Form ID” (which can be found in the forms designer after
editing the created form in the form properties at the bottom of the page) to the
ReportDialog API-call (in your instrumented application) as last parameter:
apm.ReportDialog(null, _filter, _reportkey, _description, _parentNode,

_metadata, _formOptions);

Example: apm.ReportDialog(null, _filter, _reportkey, null, null, null,
{formid: “FORM12345”, language: “de”});

 43

4. Test sending new feedbacks from your instrumented application and watch the app.telemetry
“Inbox” view for new incoming feedbacks.

5. In order to receive feedback notifications via e-mail you have to configure a default notification
channel in the “Server Properties” dialog at the “Feedback Configuration” tab.

6.5 Configure Web Timing

For detailed end-user experience monitoring including page loading times from your web browser
client you have to include a JavaScript block into the web page you want to monitor and you have to
create a “Web Timing” log pool in your app.telemetry infrastructure.

In order to enable the “Browser Telemetry” for your web page you have to put the browser-telemetry
script somewhere reachable for your web server and then include the following script block in your
web page HTML code (the best choice is to put the code in a HTML header template for all of your
web pages).

JavaScript Snippet to Include for Web Timing

<script type="text/javascript">/*<![CDATA[*/

 __apmcfg={

 id:"APM12345", /* replace with your desired application id */

 ts:new Date(),

 url: "http://yourdomain.com/", /*replace URL with your

app.telemetry WebAPI server*/

 base: "//yourdomain.com/yourdirectory/" /*required for feedback

button/dialog*/

 /*,startupTimeout: 3000 // optional, default: 3000ms */

 };

/*]]>*/</script>

<script type="text/javascript"

src="//yourdomain.com/yourdirectory/apm.js"></script>

<!-- replace above script location with real URL where script is placed

and reachable -->

The script containing the logic for measuring the page speed and transmitting the data to the
app.telemetry WebAPI is named “apm.js” and is available in the Fabasoft app.telemetry software kit

under Developer\JavaScript.

 44

The last step is to create a new “Web Timing Log Pool” in your app.telemetry infrastructure from

within the edit view and filling in your chosen application id.

6.6 Configure Web Timing with Feedback Dialog

Fabasoft app.telemetry also supports the integration of an end-user feedback dialog into your web
application. The feedback dialog transmits the text message the user entered with additional
metadata and the request information about the last clicks of the user with a reported session to the
Fabasoft app.telemetry server (via app.telemetry WebAPI).

In order to use the feedback dialog for web pages monitored with Browser Telemetry API ensure
that you have defined the “base” option in your browser telemetry code block (as mentioned above)

included in your web page and put the following resources into the same directory on your web
server (accessible by the web browser clients):

 apmdialog.js

 apmdialog.css

 since Version 2014 the images are loaded directly from the WebAPI

To include the feedback button in your page just include the following HTML snippet somewhere in
your HTML page (template):

HTML Snippet to Include for Feedback Button

<button class="apm-feedback-button apm-feedback-button-fixed apm-

feedback-button-top apm-feedback-button-right">

 Feedback

</button>

 45

6.7 Configure Notifications for Status Changes

1. Create a “Notification Channel” defining the mail server used to send notifications to the desired
notification accounts.

Note: If you run the Fabasoft app.telemetry server on Linux, the e-mails are sent via the local
sendmail process on the Linux server, so you have to setup sendmail to forward the e-mails to
your desired SMTP server. It is not possible to configure the remote SMTP server on a Fabasoft
app.telemetry Linux server via the Fabasoft app.telemetry client interface. For details how to
configure sendmail to forward e-mails to an SMTP server see appendix.

2. Configure target “Notification Accounts” that should be notified of any service state change.
Create a new notification account inside your configured notification channel.

3. Define the receiver’s e-mail address and the service elements (service group, service, service
check) that you want to be notified of any status change (you can select on which status change
this account should be notified).

4. Additionally you can select log pools if you want to get notified on any feedback escalation sent
for that application monitored with that log pool.

 46

6.7.1 Configure Notification Schedules

Since Fabasoft app.telemetry 2010 Fall Release you could additionally define “Notification
Schedules” for complex situations that require fine-grained notification settings based on SLA and
holiday definitions and maintenance times.

Notification schedules define additionally to the notification account settings (“Notification Account
Active” and “Notify when status changes to … OK|Warning|Critical”) when a notification for a specific
notification target (service group, service, service check, …) is to be sent.

Notification schedules are based on a time zone, holiday definition and service level definition which
help you to prevent sending of notifications during maintenance time ranges defined in the service
level definition.

Additionally to these basic settings you could also define time ranges where you do not want to send
any notifications (e.g.: recurrent time ranges for a weekend day, or non-recurrent time ranges for a
holiday).

Note: The time range definitions for a notification schedule will take precedence over the time range
settings in the used service level definition and non-recurrent time ranges also take precedence over
recurrent time ranges.

Note: The notification schedule settings will only take effect if you specify valid notification targets.
The notifications targets should match the targets configured for the notification account.

 47

6.8 Configure Service Level Definitions

Service level definitions will help you monitor business critical services in order to fulfill defined
service level agreements. Based on a service level definition, you can select service checks using
this definition to monitor your service health. A service level definition requires a database to persist
the service check state changes and a time zone which defines the base for all your time settings.

If you select to use a holiday definition then all holiday entries will be regarded as “remaining time”
for the SLA calculations.

A reasonable service level definition requires the definition of a “core time”. Generally this is a
recurrent time range based on time ranges for your weekdays.

After the service level definition is completely configured you can attach it to any availability service
check.

Service checks with attached service level definition can be viewed in a dashboard chart to see the
health in percentage of reached availability as defined in your SLA. (This needs to be configured
explicitly.)

 48

6.9 Using Dashboards and Charts

In order to create your own dashboard switch the web browser client to the edit view and create a
new “Dashboard” object below the root group “Dashboards”.

Note: “public” dashboards are available to all app.telemetry users whereas non-public dashboards
are not available for app.telemetry dashboard users (so dashboard users can only view public
marked dashboards and nothing else within the app.telemetry web client).

6.9.1 Chart and Data Source Types

Inside this new dashboard object you can create new charts for the following data source types:

 Availability Check

 Counter Check

 Request Duration Categories

 Top-X Reports

 Top-X Log Pool Statistics

 Service Group State

 CSV File

 Remote

6.9.1.1 Availability Check Chart

For charts with data source type “Availability Check” you have to select a service check with
attached service level definition by means of using the “Add Service Check” button and selecting the
check from the infrastructure tree.

If you select more than one service check for your availability chart, the SLA calculation will interpret
the service as available if at least one of the selected service checks is available.

You could overwrite the used service level definition with the combo box in order to use any specific
SLA definition or select “<default from check>” to use the SLA configured in your (first) service
check.

The time range can be one of list of predefined time ranges or a custom date range.

Depending on your desired presentation form you can select percentage values or absolute time
values.

 49

6.9.1.2 Counter Check Chart

For charts with data source type “Counter Check” you have to select one or a list of service checks
by means of using the “Add Counter” button.

Additionally you can decide on current values (for bar chart, gauge chart or similar) or a value trend
(for line chart).

The counter checks can be reordered by means of using drag&drop with the mouse or by selecting
a single check and press the keys CTRL+<key-up> to move the check upwards or CTRL+<key-

 50

down> to move the check downwards. The ordering of the checks will be reflected in the ordering of
the checks in the graphical chart representation (order, color).

The time range of values available for the chart is limited by the time app.telemetry keeps counter
data in memory. This time can be configured in the “Data Cleanup Settings” of the “Server Settings”
object, where you can set the “Data Online Time (hours)”. For long term counters (e.g. disk space
usage trends) you can select a database in the Service Check properties where to put the values on.
The “Counter Check Chart” will automatically read counter check data from the database if online
data are not sufficient. The available time range is limited by the maximum count of 1000 values per
counter. Configure longer time intervals in the Service Check properties to extend the available time
range in the chart.

6.9.1.3 Request Duration Categories Chart

For charts with data source type “Request Duration Categories” you have to select a log pool and a
list of request duration range classes to see how many requests for a defined time range class
occur.

A popular representation for this type of chart is the pie chart.

Note: This data source/chart only shows requests from the log pools online memory cache (and not
from database), so check your log pool settings if you see fewer requests than you expect.

With the optional filter expression you can exclude some unwanted requests from your chart. The

example in the screenshot above ("duration" < 600000000) includes (by means of an SQL WHERE-

clause) all requests with duration smaller than 60 seconds, so it excludes requests with a timeout of
60 seconds or more. The filter is based on the internal data structures of the app.telemetry server,
so the duration for example is based on a 100ns-timescale.

6.9.1.4 Top-X Reports Chart

For charts with data source type “Top-X Reports” you have to select a log pool for your Top-X report
charts.

 51

Then you have to select a list of days (the chart is presented as 24-hour line for each day compared
in the same chart). So you can for example compare request duration or request count behavior for
different days or against a defined baseline day.

The chart values define which measure or dimension (count of different dimension values) is used
for the Top-X calculation.

With the optional filter expression you can exclude some unwanted requests from your chart. The

example in the screenshot below ("duration" < 600000000) includes (by means of an SQL WHERE-

clause) all requests with duration smaller than 60 seconds, so it excludes requests with a timeout of
60 seconds or more. The filter is based on the internal data structures and database tables of the
app.telemetry server, so the duration for example is based on a 100ns-timescale.

6.9.1.5 Top-X Log Pool Statistics Chart

Since version 2014 Spring Release the configuration of Top-X log pool statistic charts have been
improved a lot. First of all you have to enable statistic reports for your log pool (using “Precalculated
Statistics”) and then you can create a new chart of type “Top-X Logpool Statistics” and choose the
desired values from the combo boxes as shown in the example dialog below.

 52

For special purpose you could still create and use your own log pool statistic definition (based on a
log pool and a database) defining how some special statistics are calculated. A knowledgebase
article (“Log Statistics”) describes this extended usage more detailed – for more help contact the
Fabasoft support.

6.9.1.6 Service Group State Chart

For charts with data source type “Service Group State” you have to select a list of service groups
you want to explicitly see in the dashboard view for this chart.

The counter checks can be reordered by means of using drag&drop with the mouse or by selecting
a single check and press the keys CTRL+<key-up> to move the check upwards or CTRL+<key-

 53

down> to move the check downwards. The ordering of the checks will be reflected in the ordering of
the checks in the graphical chart representation (order, color).

6.9.1.7 CSV Chart

Using CSV files you may integrate data from various data sources into your dashboard.

Put your data in a file in the following directory

 C:\ProgramData\Fabasoft app.telemetry\worker\chart (Microsoft Windows)

 /var/opt/app.telemetry/worker/chart (Linux)

The CSV file content has to be of following format:

 The first line contains the column description – with quoted labels separated with semicolons.

 The first column contains the time dimension (if applicable) – if you don’t use time-based values
skip this column with a leading semicolon in every line (also in the first header line)

Values must be separated by semicolons (";")

Quote text with double quotes (") and duplicate double quotes inside quoted texts.

The following example shows a CSV data file with time-based data. The time-series (first column)
does not have a header (first cell in first row empty – leading semicolon) but all data rows start with a
timestamp entry. This format can be used for line-charts or tables.

Example: CSV Chart Data File (time-based)

;"Data Set 1";"Data Set 2"

"2010-01-15";"680";"419"

"2010-01-16";"702";"458"

"2010-01-17";"745";"491"

"2010-01-18";"820";"516"

The following example shows a CSV data file with data that is not time based by skipping the first
column with a leading semicolon (;) in every line. This format can be used for bar-charts, gauge-
charts, pie-charts or a simple table.

Example: CSV Chart Data File (not time-based)

;”Disk C:\”;”CPU (Total)”;”Memory”;”Network”

;75;88;77;12

 54

6.9.2 General Chart Properties

Depending on the selected data source and data properties different chart types with different chart
properties are available:

 Line Chart

 Bar Chart

 Pie Chart

 Gauge Chart

 Table

 Status List

 55

6.9.3 Dashboard View

In the dashboard view you can select which dashboard to view, with how many columns your
dashboard should display your charts.

The dashboard view can be locked to prevent unintended modifications. In order to change the
number of chart columns, the position and size of charts or to add or remove charts just click the
“Unlock Dashboard” button to enable modifications.

To hide or remove a chart from your dashboard, just click the remove button in the top-right corner
of a chart.

In order to add any hidden charts again to your dashboard use the “Add Chart” button. This will open
a dialog to select the displayed charts.

You can reorder (drag&drop on the chart title bar) or resize the charts simply with the mouse. Your
arranged set of charts can be saved as default initial setting for all new users viewing this dashboard
with the “Save Default” button.

 56

7 Product Version Upgrades

Note: A mixed installation with different Fabasoft app.telemetry product versions is not supported!

So you have to update the Fabasoft app.telemetry server, all Fabasoft app.telemetry agents and all
Fabasoft app.telemetry web services (WebAPI) installations.

Note: Before starting the update process of the software, you should backup the configuration data
of the Fabasoft app.telemetry server:

 Linux: /etc/app.telemetry/infra.xml

 Microsoft Windows: C:\ProgramData\Fabasoft app.telemetry\infra.xml

On updating the Fabasoft app.telemetry server (not a clean new installation), you have to import a
new license file either via the web browser client interface by opening the settings dialog and
uploading a new license or by manually replacing the old license file in the file system with a new
license file in the server’s configuration directory and restart the server process afterwards. For
details see the following chapters:

 Linux: 3.2.1 Loading Fabasoft app.telemetry License

 Microsoft Windows: 5.2.1 Loading Fabasoft app.telemetry License

7.1 Upgrading to Version 2015

The installation of the new Fabasoft app.telemetry 2015 requires a new product license for the
product name “Fabasoft app.telemetry 2015” and the product version “15”. Since product version
2015 only the major version number is relevant for the license check.

7.1.1 Special Notes for Upgrades on RHEL/CentOS 6 with SELinux

If you are upgrading an old existing app.telemetry installation on a RHEL/CentOS 6 system with
activated SELinux you have to fully restart all app.telemetry and Apache daemons after the
installation in order to get the SELinux rules applied correctly.

7.1.2 Upgrade Procedure on Linux Systems

The following installation paths have been changed for Linux installations from older product
versions than “2010 Fall Release”:

 Base installation: /opt/app.telemetry/

 Configuration path: /etc/app.telemetry/

 Data path: /var/opt/app.telemetry/

Upgrade Process for Linux Environment:

1. Backup your configuration (especially your infrastructure infra.xml)

2. Upgrade your app.telemetry server by means of upgrading all app.telemetry RPMs with the rpm
command rpm -U (apptelemetryagent, apptelemetryserver, apptelemetryweb)

3. Upgrade all app.telemetry agents (rpm -U apptelemetryagent.rpm) - and if the app.telemetry

web service was installed on some agents that package has also to be

4. Install a new app.telemetry license file

5. Access the new app.telemetry web client via the new URL:
http://.../apptelemetry/index.html

 57

Details for the Configuration of the Software-Telemetry web service module on Linux on upgrading
from older product versions than “2010 Fall Release”:

Because the Software-Telemetry web service is now implemented as web service filter (instead of
as a virtual directory) you have to remove any old Software-Telemetry module configuration
directives from your custom web server configuration files.

The following configuration is loaded by default with the new Software-Telemetry web service RPM
package (apptelemetryweb.rpm):

Apache Configuration

LoadModule softwaretelemetryweb_module

/opt/app.telemetry/softwaretelemetryweb/softwaretelemetryweb.so

This module configures the global filter for "web.telemetry". For more details see the default

configuration file: /etc/httpd/conf.d/softwaretelemetryweb.conf

For any embedded Apache (as in Fabasoft Folio) remove the old strudlwebapi.conf configuration

file and any embedded configuration directive and replace it with the new Software-Telemetry web

module filter ("LoadModule ..." as listed above) to the embedded Apache instance.

7.1.3 Upgrade Procedure on Microsoft Windows Systems

The following installation paths and registry keys have been changed for Windows installations from
older product versions than “2010 Fall Release”:

 Default installation path: C:\Program Files\Fabasoft app.telemetry\

 Configuration parameters in the Windows registry: HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft
app.telemetry

 Default path for telemetry data: <AppDataDir>\Fabasoft app.telemetry\

o Microsoft Windows Server 2008: C:\ProgramData\Fabasoft app.telemetry\

Upgrade Process for Microsoft Windows Environment:

1. Backup your configuration (especially your infrastructure infra.xml)

2. Upgrade your app.telemetry server by means of running the setup.exe (important: the

setup.exe program performs some upgrade tasks!) file from the "Server" installation folder

which will upgrade all server components (server, agent, telemetry web service)

3. Upgrade all app.telemetry agents (upgrade the software package by means of running the
setup.exe from the “Agent” installation folder) - and if the Software-Telemetry web service was

installed on some agents that package has also to be updated (via the setup.exe from the

“TelemetryWeb” installation folder)

4. Install a new app.telemetry license file

5. Access the new app.telemetry web client via the new URL:
http://.../apptelemetry/index.html

7.1.4 Configuration changes for Fabasoft Folio when using Software-Telemetry Web
Service

After the upgrade of Fabasoft app.telemetry you must alter the Path to the Software-Telemetry web
service inside the configuration object of the actual Fabasoft Folio Domain to

“../tmp/web.telemetry”.

 58

The reasons therefor are:

1. The new Fabasoft app.telemetry web service (since 2010 Fall Release) is implemented as
global web service filter listening on URLs ending with "web.telemetry".

2. The web directory where the Software-Telemetry web service is run must have "Script &
Executable" permissions.

3. All requests to the app.telemetry web service must not be handled by the Fabasoft web service
handler so the Fabasoft web server "tmp"-folder is used which provides static content and does

not handle other requests.

 59

8 Fabasoft app.telemetry Architecture

8.1 Fabasoft app.telemetry Server

The Fabasoft app.telemetry Server consists of 4 Processes providing different Services.

8.1.1 Fabasoft app.telemetry Server Service

The Fabasoft app.telemetry Server service is responsible for the Communication with all Fabasoft
app.telemetry Agents, which includes the collection of counter, service-check and telemetry data.
Counter and service-check data are processed to provide a system status view and are persisted on
a database as configured. Telemetry data are persisted, analyzed to provide a log pool based view
of requests. These request data are persisted to the database as configured.

8.1.2 Fabasoft app.telemetry Worker Service

The Fabasoft app.telemetry Worker is responsible for providing Information to the Fabasoft
app.telemetry Client through the Fabasoft app.telemetry Webservice. The Fabasoft Worker Service
reads telemetry data from disk written by the Fabasoft app.telemetry Server and it can load requests
in memory.

8.1.3 Fabasoft app.telemetry Webservice

The Fabasoft app.telemetry Webservice receives the requests form the Fabasoft app.telemetry
Clients and passes them to the worker for further processing.

8.1.4 Fabasoft app.telemetry Ecomm Service

The Fabasoft app.telemetry Ecomm Service is responsible for handling outgoing communication
requests using http/https transfer (e.g. sending a session to a service desk).

Agent
Agent

Agent
Server Worker Webserver Client

Client
Client

Ecomm

Fabasoft app.telemetry Server

 60

8.2 Fabasoft app.telemetry Agent

The Fabasoft app.telemetry Agent collects counter- and servicecheck-data and receives telemetry
data from local applications. All data is buffered and streamed to the Fabasoft app.telemetry Server
service on request.

8.3 Fabasoft app.telemetry Client

The Fabasoft app.telemetry Client connects vie http/https to the Fabasoft app.telemetry Webserver.
It loads static resources from the Webserver and dynamic data through JSON requests, which the
Webserver forwards to the Fabasoft app.telemetry Worker.

8.4 Secure Communication

The communication between all the Fabasoft app.telemetry services is encrypted using TLS protocol
with ciphers currently stated as secure. The communication between the Fabasoft app.telemetry
Client and the Fabasoft app.telemetry Webserver uses http or https as provided by the webserver in
use (Microsoft Internet Information Server or Apache Webserver). Configure http/https security as
required using the webserver configuration parameters.

8.4.1 Certificate Management

By default, all Fabasoft app.telemetry Services create 2048 bit RSA self-signed certificates for

secure communication. The certificates are stored locally as cli_certificate.pem and/or

srv_certificate.pem on the machine under /etc/app.telemetry/<servicename> respectively

“C:\ProgramData\Fabasoft app.telemetry\<servicename>”. Validation of client certificates is

being implemented by checking the sha2 hash of the client certificate against those permitted in the

trusted_certificates.cfg file. The client certificates are automatically added to the trusted

certificate of all Fabasoft app.telemetry server services.

Be careful when updating the Fabasoft app.telemetry Server service client certificate, because the
trusted_certificates.cfg file on all agents has to be removed or rolled out, because the agent only
adds the hash of the client certificate of the first server connecting to the app.telemetry Agent to the
trusted_certificates.cfg. All connections with different certificates will be denied.

To generate new certificates, simply remove the certificate from the file system and restart the
respective service.

To create a new self-signed for the use as a client certificate:

openssl genrsa -out key.pem 2048

openssl req -new -key key.pem -out key.csr

… provide organization parameters requested

openssl x509 -req -days 3650 -in key.csr -signkey key.pem -out certificate.pem

cat key.nopass.key certificate.pem > cli_certificate.pem

To compute the hash needed for the trusted_certificates.cfg file:

openssl x509 -fingerprint -in cli_certificate.pem -noout -sha256

Insert the fingerprint value at the beginning of a new line in the trusted_certificates.cfg file of the
service that should trust that client certificate.

 61

8.4.2 Trusted Certificates

When setting the trusted_certificates.cfg manually make sure to provide the following trusts:

Service Trusts

Agent Server

Server Worker, Ecomm

Worker Server, Webserver

Ecomm Worker

Each service has to include the hashes of the cli_certificates.pem of all trusted servers in their

trusted_certificates.cfg. For example the server/trusted_certificates.cfg has to include

the hashes of worker/cli_certificate.pem, ecomm/cli_certificate.pem and

webserver/cli_certificate.pem.

The default way to provide this is, that each service checks its own certificates on startup. If the
certificate is absent or invalid it creates a new self-signed certificate and adds the hash of it to the

trusted_certificates.cfg files of all required services.

The remote agents automatically trust the first service connecting to the agent by adding its client

certificate hash to the new trust file. When changing the server/cli_certificate.pem, the

agent/trusted_certificates.cfg has to be deleted or patched on all remote agents.

8.4.3 Failover/Standby configuration

When setting up a Standby server, you have to deal with the problem, that your agents will only
accept one server identified by its client certificate. So you either copy you server client certificate to

the failover server or you have to distribute a trusted_certificates.cfg file containing all hashes

of the server/cli_certificates.pem of all servers. The most common way to deal with this is to

replace all certificates and trusted_certificates.cfg of the backup server with those of the original
server.

9 Appendix

9.1 Installing Internet Information Services on Microsoft Windows
Server 2008 / 2012

1. Install the role “Internet Information Services (IIS)” using the Server Manager and click on “Add
Roles”.

 62

2. Choose “Web Server (IIS)” and click on “Next “

3. Enable all flags for Security (for details see prerequisites listed in our SPI) and set the flag for
“Dynamic Content Compression”.

Click “Next” and finish the installation.

 63

9.2 Enabling SSL after installation of Fabasoft app.telemetry Server

9.2.1 SSL Configuration on Microsoft Windows (IIS)

1. Switch to the „Default Web Site“-properties view and go to the “Web Site”-Tab inside your IIS-
Manager and configure a valid SSL port (443).

2. Then switch to the “Directory Security”-tab and click on “Server Certificate”. In this wizard you
can import/create/assign a certificate which is used for the SSL connection.

 64

3. After doing this click on the “Edit “-Button and ensure that the checkbox “Require secure
channel” is enabled.

9.2.2 SSL Configuration on Linux (Apache)

If you don’t already have a certificate for the server you should obtain as X509 certificate file (.crt)

and the appropriate key file (.key).

If it is not possible to get the certificate from a trusted certificate authority (CA) you could also
generate a self-signed certificate:

Linux Shell Commands:

mkdir /etc/httpd/conf/ssl

openssl req -x509 -newkey rsa:1024 -keyout /etc/httpd/conf/ssl/server.key

-out /etc/httpd/conf/ssl/server.crt -days 365 -nodes

The next step is to set up the server certificate file in the Apache configuration. In normal cases

there should be a default configuration file located in /etc/httpd/conf.d/ssl.conf.

Apache SSL Configuration (/etc/httpd/conf.d/ssl.conf)

LoadModule ssl_module modules/mod_ssl.so

Listen 443

...

<VirtualHost _default_:443>

 ...

 SSLEngine on

 SSLCertificateFile /etc/httpd/conf/ssl/server.crt

 SSLCertificateKeyFile /etc/httpd/conf/ssl/server.key

 ...

</VirtualHost>

 65

Global trusted certificates will be accepted by the client without any warnings. If the server is
secured by self-signed certificates, the client will pop up a warning dialog asking if the certificate
should be trusted once or permanently.

9.3 Debugging and Logging

9.3.1 Microsoft Windows

On Microsoft Windows systems the Fabasoft app.telemetry agent and server components and the
Software-Telemetry library will log important or critical events to the Microsoft Windows event log
application log.

9.3.2 Linux

On Linux systems the Fabasoft app.telemetry agent and server components and the Software-
Telemetry library will log important or critical events to the Linux syslog daemon.

The messages are logged with the application name (“app.telemetry”) and daemon process name
(apptelemetryagent or apptelemetryserver).

The default logging location is /var/log/messages.

The used log level can be changed for both processes in their configuration file:

 app.telemetry agent: /etc/app.telemetry/agent.conf

 app.telemetry server: /etc/app.telemetry/server.conf

The syntax for the configuration of the used log level is the following:

Log Level Configuration:

LogLevel <level>

Default setting is:

LogLevel LOG_WARNING

The default log level is LOG_WARNING which means that all events of this and higher levels (ERR,

CRIT, ALERT, EMERG) are logged.

The available log levels are:

 LOG_EMERG (0)

 LOG_ALERT (1)

 LOG_CRIT (2)

 LOG_ERR (3)

 LOG_WARNING (4)

 LOG_NOTICE (5)

 LOG_INFO (6)

 LOG_DEBUG (7)

Additional to the logging of important process events to the syslog daemon the app.telemetry Linux
processes can optionally be configured to write much more process trace output for debugging

purpose. This ProcessOutFile can be configured in the configuration file of the desired process:

Example configuration for apptelemetryserver: /etc/app.telemetry/server.conf

 66

The ProcessOutFile property defines a file where the daemons debugging

output should be written.

This property is disabled by default.

The default installation contains a logrotate config for:

/var/log/app.telemetry/apptelemetryworkerd.log

ProcessOutFile /var/log/app.telemetry/apptelemetryworkerd.log

9.3.3 Fabasoft app.telemetry Client - Logging

When detecting any troubles using the Fabasoft app.telemetry web browser client with your desired
web browser, first check if that web browser is supported by Fabasoft app.telemetry.

One step further for problem solving is using debugging tools for your web browser (e.g. Firebug for
Mozilla Firefox or Google Chrome Developer Tools) and watch the debugging console output or the
network requests.

9.4 Special Configuration Parameters

9.4.1 Configuration of Listening Ports for Fabasoft app.telemetry Agent/Server

If special environmental conditions require to use different listening ports for your Fabasoft
app.telemetry agents (default = 10001) and server (default = 10000) change the default port
numbers to your desired port numbers.

After changing the value for the Fabasoft app.telemetry agent restart the agent service (and update
the agent configuration in the app.telemetry infrastructure by means of using the web client) and
after changing the value for the Fabasoft app.telemetry server restart the server and the web server
services.

9.4.1.1 Configuration of Listening Ports on Linux

On Linux systems change the ports in the configuration files mentioned below and restart the
agent/server daemons.

app.telemetry Server Port Configuration (/etc/app.telemetry/server.conf)

ListenPort 10000

app.telemetry Agent Port Configuration (/etc/app.telemetry/agent.conf)

ListenPort 10001

For the Fabasoft app.telemetry server port the Apache web server also has to be restarted after the
changes have been saved.

9.4.1.2 Configuration of Listening Ports on Microsoft Windows

On Microsoft Windows systems change the ports in the Microsoft Windows registry in the keys
mentioned below and restart the agent/server services.

Start the Microsoft Windows Registry Editor and create the following registry keys:

 67

app.telemetry Registry Keys

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft app.telemetry\Agent

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft app.telemetry\Server

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft app.telemetry\Worker

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft app.telemetry\Ecomm

Create new DWORD-values with the name “ListenPort” and the desired port number (entered as

decimal value!):

app.telemetry Registry Keys for Listening Ports

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft app.telemetry\Agent\ListenPort =

10001

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft app.telemetry\Server\ListenPort =

10000

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft app.telemetry\Ecomm\ListenPort =

10003

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft app.telemetry\Worker\ListenPort =

10004

9.4.2 Configuration of Software-Telemetry Data Directory (Server)

The Fabasoft app.telemetry server stores the Software-Telemetry data files required for deep
analysis of Software-Telemetry requests (detailed data view) on the server’s hard disk.

These data files require (based on the infrastructure size and level of permanent Software-
Telemetry) a medium or big amount of space on the disk. The files are stored in separate folders for
each day, so that they can be deleted after some time. A later use of these files by means of import
or restore from a backup is not supported by the Fabasoft app.telemetry server.

9.4.2.1 Configuration of Software-Telemetry Data Directory on Linux

On Linux systems change the target path for storing the Software-Telemetry data in the server
configuration file mentioned below and restart the server daemon.

Software-Telemetry Data Path Configuration (/etc/app.telemetry/server.conf)

SoftwareTelemetryDataPath /var/opt/app.telemetry/server/telemetry

The default location of these files/directories on Linux systems is
/var/opt/app.telemetry/server/telemetry.

9.4.2.2 Configuration of Software-Telemetry Data Directory on Microsoft Windows

On Microsoft Windows systems change the target path for storing the Software-Telemetry data in
the Microsoft Windows registry in the key mentioned below and restart the server service afterwards.

Create new “String”-value below the “Server” registry key with the name

“SoftwareTelemetryDataPath” and the desired directory path:

 68

Software-Telemetry Data Path Registry Key

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft

app.telemetry\Server\SoftwareTelemetryDataPath = “<your Path>”

The default location of these files/directories on Microsoft Windows systems is located in the

“Application Data” directory in the sub path “Fabasoft app.telemetry\server\telemetry”.

For example on Microsoft Windows Server 2008: C:\ProgramData\Fabasoft

app.telemetry\server\telemetry.

9.4.3 Configuration of Software-Telemetry Session Export Directory (Server)

Feedback sessions or reported Software-Telemetry sessions are normally stored within the
Software-Telemetry raw data therefore the session/feedback details will not be available any longer
if the raw data directories of the corresponding day was deleted (e.g. if raw data cleanup after x days
is configured).

The Fabasoft app.telemetry server can be configured to export Software-Telemetry sessions
automatically to a file system directory on the server’s hard disk. The responsible server setting is
called “SoftwareTelemetrySessionPath” and can be configured depending on the target system as
follows:

On Linux systems set the configuration parameter in the server configuration file as mentioned
below and restart the server daemon.

Software-Telemetry Session Path Configuration (/etc/app.telemetry/server.conf)

SoftwareTelemetrySessionPath /var/opt/app.telemetry/server/session-export

On Microsoft Windows systems add the configuration parameter as new Microsoft Windows registry
key (“String”-value) with the desired directory path:

Software-Telemetry Session Path Registry Key

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft

app.telemetry\Server\SoftwareTelemetrySessionPath = “<your Path>”

This feature is enabled by default using a default path beside the rawdata directory on the server

(e.g. /var/opt/app.telemetry/server/sessions). You can disable this automatic session export

by setting an empty value for the configuration key mentioned above.

Note: Software-Telemetry sessions will only exported once. Any old available sessions will be
exported after the first restart of the app.telemetry server after the export directory was configured.
Any new sessions will be exported after they are fully processed by the server to the directory
configured at that time.

9.4.4 Configuration of Disk Cache and Memory Buffer for the Agent

The Fabasoft app.telemetry agent stores the Software-Telemetry data sent by any instrumented
application temporary in memory or on the hard disk (as configured) until the app.telemetry server
fetches that data to process and persist it on the server’s hard disk.

When the server is not able to fetch the data (e.g. is too slow, or the network connection is down)
the agent’s memory consumption will increase until a defined limit is reached. After that limit is
reached the telemetry data will be written to the hard disk in a temporary folder which can also be
limited with a maximum size limit.

 69

With Fabasoft app.telemetry 2011 Spring Release an additional 3rd level cache has been
implemented to provide a method to store request data on a remote medium in case the Fabasoft
app.telemetry Server is not able to collect telemetry data for a longer period of time.

The following configuration parameters exist and can be used to change the default values:

 TelemetryDiskCacheDirectory: defines the data directory where the agent stores temporary

data.

 TelemetryDiskCacheSize: defines the maximum disk cache size limit in megabytes (MB)

o Minimum: 100 MB

o Maximum: 100 GB (102400)

o Default: 1 GB (1024)

 TelemetryBufferSize: defines the maximum agent memory buffer size limit in megabytes (MB)

o Minimum: 20 MB

o Maximum: 1 GB (1024)

o Default: 100 MB

o Note: this value is only an approximate value limiting the telemetry buffer in the agent
process, the real memory consumption of the agent process may be higher (up to twice the
defined limit)

 TelemetryExtendedDiskCacheDirectory: The directory path where the extended 3rd level cache

should be stored. Default this value is not set and therefore not used.

The configuration of these parameters can be set on Microsoft Windows systems in the Windows
registry and on Linux systems in the agent configuration file. A change of any parameter requires the
agent process to be restarted.

How caches are written:

 Software-Telemetry data blocks received from individual processes are copied from the shared
memory to the agent process memory and stored in a "per process" queue.

 The queuing thread fetches the data block from "per process" queues and apply compression.
As compression is CPU bound this thread may utilize one CPU. On heavy data load
compression may limit data throughput and agent memory consumption may raise.

 If the TelemetryBufferSize limit is reached, data blocks will be written to the disk cache (in
TelemetryDiskCacheDirectory up to TelemetryDiskCacheSize MB).

 If the TelemetryBufferSize limit is reached and the disk cache is disabled or full, data blocks will
be written to the extended disk cache in TelemetryExtendedDiskCacheDirectory. Each file is
written continuously from memory cache, so the cache file size is at least TelemetryBufferSize

MB but maximum 100MB in size.

 If the TelemetryBufferSize limit is reached and the disk cache is disabled or full and no extended
disk cache is configured or the extended disk cache is not accessible, data will be dropped.

How caches are read:

 If data is stored in the standard disk cache, this data will be transferred to the server first.

 If the disk cache is empty, the content of the extended disk cache will be passed to the server
file by file.

 If the disk cache is empty an no extended disk cache files are present the data will be fetched
from the memory cache.

9.4.4.1 Configuration of Disk Cache and Memory Buffer for the Agent on Linux

On Linux systems the temporary data settings can be modified with the agent configuration file

located at /etc/app.telemetry/agent.conf

 70

Example: Disk Cache and Memory Buffer Configuration (/etc/app.telemetry/agent.conf)

TelemetryDiskCacheDirectory /var/opt/app.telemetry/agent/telemetry

TelemetryDiskCacheSize 1024

TelemetryBufferSize 100

TelemetryExtendedDiskCacheDirectory /remote-NAS/temp-storage/agent-01

The default agent temporary data directory is /var/opt/app.telemetry/agent/telemetry.

Specify the size limits with integer numbers in megabytes (MB).

Changes of any parameter will not take effect until the agent process is restarted.

9.4.4.2 Configuration of Disk Cache and Memory Buffer for the Agent on Microsoft
Windows

On Microsoft Windows systems the temporary data settings can be modified in the Microsoft
Windows registry in the key mentioned below.

Navigate to or create registry key:
\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft app.telemetry\Agent

Create a new “String”-value for every of the following entries.

Specify the size limits with integer numbers in megabytes (MB) - (registry value of type String).

Example: Disk Cache and Memory Buffer Configuration Registry Keys

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft app.telemetry\Agent\

TelemetryDiskCacheDirectory = “C:\...”

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft

app.telemetry\Agent\TelemetryDiskCacheSize = “1024”

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft

app.telemetry\Agent\TelemetryBufferSize = “100”

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft

app.telemetry\Agent\TelemetryExtendedDiskCacheDirectory = “X:\remote-

NAS\temp-storage\agent-01”

The default agent temporary data directory is <ProgramData>/Fabasoft

app.telemetry/agent/telemetry.

Changes of any parameter will not take effect until the agent process is restarted.

9.4.5 Configuration of Database Rollforward Logs on the app.telemetry Server

To reduce the possibility of a data loss when the database storing request data is not available or
when the Fabasoft app.telemetry Server has been stopped, a log containing all processed requests
will be persisted on the file system. When the Fabasoft app.telemetry server restarts, all files will be
processed to persist pending requests. Requests that cannot be written to the database will be
copied into additional files, which can be reprocessed when the failure situation has been resolved.

To turn on the “Database Rollforward Log” you have to specify a folder, where the log files will be

written to. For each log pool a subdirectory "LogFile" + database table prefix will be created. Each

log file is named "logfile" + <timestamp> + ".dat" and may contain up to 10000 Requests. A

log file will be deleted, when each requests has been either successfully committed to the database

or has been copied to a "skipfile". A "skipfile" is named "skipfile" + <timestamp> + ".dat"

 71

and contains records that could not be written to the database. To retry writing records from a

skipfile to the database, the "skipfile" must be renamed to "logfile" and the file will be reprocessed

when the app.telemetry server will be restarted.

When “Database Rollforward Logs” are active, it is not necessary to keep all pending requests in
memory, so the memory consumption of the app.telemetry server process in case of a slow or
unavailable database will not increase so fast.

9.4.5.1 Configuration of Database Rollforward Logs on Linux Systems

All configuration values can be defined in the app.telemetry server configuration file:

/etc/app.telemetry/server.conf.

Define the properties and values as key-value pairs.

SoftwareTelemetryLogfilePath: The directory path where the directories for the log files will be

created.

Example: Database Rollforward Log Configuration (/etc/app.telemetry/server.conf)

SoftwareTelemetryLogfilePath /var/logfiles...

9.4.5.2 Configuration of Database Rollforward Logs on Microsoft Windows Systems

All configuration values can be defined as Microsoft Windows registry keys.

Create the desired registry value as “String”-value below the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft app.telemetry\Server

SoftwareTelemetryLogfilePath: The directory path where the directories for the log files will be

created.

Example: Database Rollforward Log Configuration Registry Key

\HKEY_LOCAL_MACHINE\SOFTWARE\Fabasoft

app.telemetry\Server\SoftwareTelemetryLogfilePath = “C:\data\logs\...”

9.5 Configure Sendmail to Forward E-mails

Configure your remote SMTP server via the setting “msp” in /etc/mail/submit.mc

Example: /etc/mail/submit.mc

define(`confDIRECT_SUBMISSION_MODIFIERS', `C')dnl

FEATURE(`accept_unresolvable_domains')dnl

FEATURE(`accept_unqualified_senders')dnl

FEATURE(`msp', `[10.20.30.40]')dnl

Configure your remote SMTP server via setting „SMART_HOST” in /etc/mail/sendmail.mc

Example: /etc/mail/sendmail.mc

define(`SMART_HOST',`10.20.30.40')

FEATURE(`accept_unresolvable_domains')dnl

 72

Recompile the sendmail configuration files (requires package sendmail-cf) and restart sendmail

and the app.telemetry server process.

Linux Shell Commands:

make sendmail.cf

make submit.cf

/etc/init.d/sendmail restart

/etc/init.d/apptelemetryserverd restart

9.6 Fabasoft app.telemetry with SELinux

The basic support for SELinux on RHEL/CentOS 6 systems includes the following:

 The Fabasoft app.telemetry RPMs include the basic SELinux policy files.

 The files installed by Fabasoft app.telemetry RPMs are installed to

/opt/app.telemetry/selinux and include the following file types:

o <process>.fc: SELinux file context settings for <process>.

o <process>.te: SELinux policy rules for <process>.

o <process>.if: SELinux interface rules for <process>.

o <process>.pp: precompiled SELinux policy module for <process> compiled for latest

supported CentOS 6.x version (supported with Fabasoft app.telemetry server).

o <process>.sh: Shell script helping to adapt SELinux policies for your environment.

The Fabasoft app.telemetry RHEL/CentOS 6 RPMs already include the basic SELinux configuration
for running in a simple environment.

In some situations you may need to modify the app.telemetry SELinux policy for your systems. The
following shell script may help you.

Syntax: <process>.sh [--update | --rebuild | --uninstall | --skip-build]

 --skip-build: update the SELinux policy module without rebuilding using the current policy file

/opt/app.telemetry/selinux/<process>.pp and restore SELinux file contexts (FCs).

 --rebuild: rebuilding policy module based on local sources (.fc, .te, .if) and then reload new

policy module and restore FCs.

 --update: check SELinux audit.log for any denies and ask to extend any missing rules. Then

also rebuild, reload and restore FCs.

 --uninstall: uninstall the SELinux policy module for this <process>.

SELinux audit logs are normally logged to /var/log/audit/audit.log.

The Fabasoft app.telemetry server SELinux policy provides tunable SELinux Booleans for enabling
or disabling security critical server features (default they are disabled):

 allow_apptelemetryserver_cmdlinenotifications: with this Boolean you can enable

command line notifications for the server (running any shell script). Based on your command line
notification script some more SELinux permissions may be required.

The current state of the SELinux Booleans can be checked with the command getsebool <name>.

To enable or disable these optional permissions use the following command: setsebool [-P]

<name>=true|false. The optional –P flag makes the setting permanent (for reboots).

 73

Linux Shell Commands:

> setsebool -P allow_apptelemetryserver_cmdlinenotifications=true

> getsebool allow_apptelemetryserver_cmdlinenotifications

 allow_apptelemetryserver_cmdlinenotifications --> on

Warning: Be careful on changing any app.telemetry default settings (file system paths, network
ports, etc.) to custom settings. This may break the default SELinux support and may require manual
changing of the policy!

Note: On upgrading an existing app.telemetry installation with previously no SELinux support (<=
12.2) to a new app.telemetry installation with SELinux support (>= 12.3) you have to restart all
app.telemetry daemons and the Apache daemon so that the SELinux rules are fully applied to all
running services.

9.7 Using PostgreSQL Database for app.telemetry Server on Microsoft
Windows

Since version 2013 Summer Release the app.telemetry Server also supports the PostgreSQL
database on Microsoft Windows (to be able to use a free and unlimited database).

Installation:

1. Just install the PostgreSQL package for Microsoft Windows (Win x86-64) available from the
website http://www.postgresql.org/ on your Fabasoft app.telemetry server.

2. Add the path of the libpq.dll (e.g. “C:\Program Files\PostgreSQL\9.2\bin”) to the system

PATH variable.

3. Restart the app.telemetry server service.

Configuration:

4. Create a database and a database login role in PostgreSQL (e.g. using pgAdmin tool).

5. Add a “PostgreSQL Database Connection” below “Database Connections” using the edit view of
the Fabasoft app.telemetry client. (The menu entry will only be available, if the Fabasoft

app.telemetry server is able to successfully load the libpq library.)

The new database support has been tested with PostgreSQL version 9.2.4 but should work with all
recent versions of PostgreSQL for Microsoft Windows (64 bit).

9.8 Configuration of PostgreSQL Database for app.telemetry Server on
Linux

On Linux systems a PostgreSQL database can be used to persist data (like requests, Top-X reports,
SLA data, etc.) of the app.telemetry server.

The Fabasoft app.telemetry server connects to the PostgreSQL database via network connection
(TCP/IP), so the following PostgreSQL authentication settings are responsible for login checks:

 PostgreSQL database on Localhost: IPv4 local connections ... 127.0.0.1/32

 PostgreSQL database on remote host (remote Network IPv4)

The PostgreSQL authentication settings are managed by the pg_hba.conf configuration file from

the PostgreSQL data directory (normally located at: /var/lib/pgsql/data).

There are two possibilities how to set up the PostgreSQL database authentication settings in order
to use with the Fabasoft app.telemetry server:

http://www.postgresql.org/

 74

 Trusted authentication (trust)

o should only be set up for local connections - consider security issues

o you do not have to specify a password within the app.telemetry client database connection
properties

o Test connection from the Linux shell by means of: psql -d testdb -U testuser

 Password authentication (password)

o requires to set a password for the PostgreSQL database user

 ALTER ROLE testuser WITH PASSWORD 'mypwd';

o requires to specifiy the password within the app.telemetry client database connection
properties

o Test connection from the Linux shell by means of: psql -d testdb -U testuser -W and

enter the defined password when prompted

Possible Problems / Missconfiguration:

 Password Authentication - but no password configured for database user

o when using password authentication, ensure that you have set a password for your database
user within the database management console (psql)

 Password Authentication - but no password specified for database user within app.telemetry
client

 Authentication set for the wrong target

o ensure that your authentication settings are specified for the correct network address (IPv4) -
for local connections via the local network address host 127.0.0.1/32

Sample Configuration

 Configure PostgreSQL authentication settings by means of modifying pg_hba.conf:

Example Configuraion: /var/lib/pgsql/data/pg_hba.conf

TYPE DATABASE USER CIDR-ADDRESS METHOD

"local" is for Unix domain socket connections only (not used with

Fabasoft app.telemetry Server)

local all all trust

IPv4 local connections:

host all all 127.0.0.1/32 password

 Setup the database: su postgres; psql

o Create a new database user/role: CREATE ROLE testuser LOGIN;

o Create a new database instance: CREATE DATABASE testdb OWNER testuser;

o Set the password for the database user: ALTER ROLE testuser WITH PASSWORD 'mypwd';

 Test database connection (you should exit from the previous psql session (\q) and from

previous su postgres environment (exit))

o psql -d testdb -U testuser -W

 Start the Fabasoft app.telemetry web browser client and switch to edit view

o create a new database connection and enter the database properties

 Database Server = localhost

 Database Port = 5432

 Database Login User Name = testuser

 75

 Password for Login = mypwd

 Database = testdb

o Click the "Test" button to check the configuration

9.9 Installing Fabasoft app.telemetry on RHEL/CentOS 7

With Fabasoft app.telemetry 2015 we have introduced full support for RHEL/CentOS 7 so this
platform can be used as app.telemetry agent platform (incl. WebAPI or Apache module) or to install
the whole app.telemetry server on this platform or even to collect syslog messages by means of
using the app.telemetry syslog forwarder.

Note: RHEL/CentOS 7 is using the SystemD tools to manage running services therefor other
commands have to be used to start, stop and manage the app.telemetry daemons.

9.9.1 Start/Stop/Status of Daemons

On RHEL/CentOS 7 you have to use the systemctl command to start or stop a daemon or the get

the current status.

Example daemon service commands using systemctl

systemctl start|status|stop <name>.service

systemctl start apptelemetryagent.service

systemctl status apptelemetryserver.service

systemctl stop apptelemetryworker.service

9.9.2 Enable Autostart of Daemons

The systemctl command can also be used to enable or disable automatic startup of a service.

Examples for enabling autostart using systemctl

systemctl enable|disable <name>.service

systemctl disable apptelemetryagent.service

systemctl enable apptelemetryserver.service

Note: The app.telemetry services will be enabled by default during the RPM installation.

In order to get a full list of supported systemctl commands see the man page (man systemctl).

9.9.3 Customize Startup Parameters (Core Dump Settings)

Similar to the daemon init scripts and their configuration files located in

/etc/sysconfig/<daemonname> that gave you the possibility to customize startup parameters on
RHEL/CentOS until version 6.x the SystemD tools also provide similar configuration hooks.

The default startup settings for the app.telemetry daemons are located in

/usr/lib/systemd/system/<name>.service and define the basic startup parameters like

automatic restart on failure.

Custom startup parameters can be defined by adding your own configuration file to the directory

/etc/systemd/system/<name>.service.d/. These custom files will not be overwritten on RPM

upgrades.

For example to turn on core dumps for a crashing app.telemetry agent process add following file:

 76

/etc/systemd/system/apptelemetryagent.service.d/dumps.conf

[Service]

LimitCORE=infinity

The Location where those core dumps are written can be customized in the global SystemD

configuration file /etc/sysctl.conf:

/etc/sysctl.conf

own core file pattern...

kernel.core_pattern=/var/dumps/core.%e.%p.%h.%t

