

ISBN: 978-3-902495-28-0

All rights reserved, including photocopying, sound recording of any kind,

copying of excerpts or saving and printing using word processors of any

kind.

Please note: although the information in this book is accurate to the best of

our knowledge, the authors and publishers cannot be held responsible for

any errors or omissions.

Fabasoft and the Fabasoft logo are registered trademarks of Fabasoft AG.

Microsoft, MS-DOS, Windows, the Windows logo, Windows 95, Windows

98, Windows Me, Windows XP, Windows NT, Windows 2000, Windows

Vista, Windows Server, Active Directory, Outlook, Excel, Word,

PowerPoint, Visual Studio, Visual Basic, Visual C++ are either trademarks

or registered trademarks of Microsoft Corporation.

All other hardware and software names referred to in this book are trade

names and/or brand names belonging to the relevant manufacturer.

© Fabasoft International Services GmbH, Linz 2011

 Honauerstraße 4, 4020 Linz

 Tel.: +43 (732) 606162

 http://www.fabasoft.com

Developing Fabasoft Folio Cloud Apps

Andreas Hofmann

 6 Developing Fabasoft Folio Cloud Apps

Contents

1 Getting started 11

1.1 What is Fabasoft Folio Cloud? 11

1.2 What is Fabasoft app.ducx? 11

1.3 Who should read this book? 11

1.4 Why develop Cloud Apps? 12

1.5 What do you need to get started? 13

1.6 Which software do you need on your computer? 14

1.7 What is covered by this book? 14

1.8 General remarks concerning examples 14

2 Diving into Fabasoft Folio Cloud 17

2.1 Fabasoft Folio Cloud editions 17

2.2 Registration and account setup 18

2.2.1 Logging in using an OpenID account 18

2.2.2 Logging in using a certificate 19

2.2.3 Logging in using mobile PIN 19

2.3 The Fabasoft Folio Cloud portal 19

2.3.1 The „Home‟ portal page 20

2.3.2 The „Contacts‟ portal page 20

2.3.3 The „Mindbreeze‟ portal page 21

2.4 Sharing contents with others 21

2.5 Join the community! 21

2.6 Invite others to join the Fabasoft Folio Cloud! 22

3 Starting your Cloud App development project 25

3.1 Getting a Cloud App Development subscription 25

3.2 Getting a Cloud App VDE subscription 25

3.3 Legal aspects of Cloud App development 26

3.4 Fabasoft Folio Cloud update cycle 26

3.5 Managing your development project with Scrum 28

3.5.1 What is Scrum? 28

3.5.2 The “Scrum Projects” Cloud App 29

3.6 What you need to do to get your Cloud App deployed 29

4 Setting up the development environment 33

4.1 Installing the Eclipse IDE 33

4.2 Installing the Fabasoft app.ducx plug-in 33

4.2.1 Updating the Fabasoft app.ducx plug-in 34

 Developing Fabasoft Folio Cloud Apps 7

4.2.2 Improving the performance of Eclipse 34

4.3 Working with the Cloud App VDE 35

4.3.1 Fabasoft Folio Cloud Sandbox 37

4.3.2 Fabasoft app.telemetry 37

5 Creating your Cloud App 41

5.1 Introducing your first Cloud App 41

5.2 Creating the development project 42

5.3 Creating a release 43

5.4 Importing the Fabasoft app.ducx project in Eclipse 44

5.4.1 Defining the default web service 44

5.4.2 Defining the default range service 45

5.4.3 Importing the Fabasoft app.ducx project from Subversion 46

5.4.4 Selecting the address range 49

5.5 Accessing and managing the source code in Subversion 49

6 Implementing your Cloud App 53

6.1 Introducing the domain-specific languages of Fabasoft app.ducx 53

6.2 Defining the object model 54

6.2.1 Adding the „Trip‟ structure 55

6.2.2 Using terms for the trip type 57

6.2.3 Adding software component references 57

6.2.4 Defining the „TripLog‟ object class 58

6.2.5 Defining the „Logbook‟ object class 59

6.2.6 Linking logbook and trip logs 60

6.2.7 Defining the language strings of your object model elements 62

6.3 Defining the symbols 64

6.4 Designing the forms 67

6.4.1 Defining a form set for the „Logbook‟ object class 67

6.4.2 Assigning a symbol to the „Logbook‟ object class 70

6.4.3 Defining a form set and symbol for the „TripLog‟ object class 70

6.4.4 Layouting form pages using the form designer 71

6.4.5 Defining the columns for the „logtriplogs‟ property 75

6.4.6 Beefing up a form page 77

6.5 Committing your changes to the Subversion repository 78

6.6 Uploading your Cloud App into the Cloud Sandbox 79

6.6.1 Deploying your Cloud App 79

6.6.2 Assigning your Cloud App to a test user 80

6.6.3 Your first glimpse of your Cloud App 81

 8 Developing Fabasoft Folio Cloud Apps

6.7 Implementing the use cases 82

6.7.1 Adding a wizard for recording a trip 82

6.7.2 Adding a wizard for canceling a trip 101

6.7.3 Adding a wizard for closing a trip log 107

6.7.4 Adding a display action to show the number of recorded trips 110

6.7.5 Calculating the date of the first and last entry in a trip log 111

6.8 Embedding Google visualizations 112

6.9 The finishing touches 116

6.9.1 Defining a name build for the „TripLog‟ object class 116

6.9.2 Establishing an ACL reference between trip log and logbook 118

6.9.3 Deleting the trip logs along with the logbook 119

6.9.4 Things to consider when dealing with team rooms 119

6.9.5 Activating the license check for your object classes 120

6.9.6 Reacting to app state changes 121

6.9.7 Defining an app category 122

6.9.8 Defining the context-sensitive help 123

6.10 Advanced stuff 125

6.10.1 Creating a web service 125

6.10.2 Other supported APIs 128

6.11 Tracing and debugging 128

6.11.1 Tracing in Fabasoft app.ducx expression language 128

6.11.2 Debugging your Cloud App 130

7 Testing your Cloud App 133

7.1 Creating and running unit tests 133

7.1.1 Creating a unit test 133

7.1.2 Running a unit test 136

7.1.3 Creating and running a unit test group 137

7.2 Creating and running Fabasoft app.test tests 138

7.2.1 Installing Fabasoft app.test Studio primo 138

7.2.2 Importing the Fabasoft app.test project 138

7.2.3 Importing the common test sequences and use cases 140

7.2.4 Creating a test 140

7.2.5 Running a test 147

7.3 Checking and improving the coverage of your tests 148

8 Getting help, code samples and support 151

8.1 Help and documentation 151

8.2 Retrieving code samples from the public Subversion repository 151

 Developing Fabasoft Folio Cloud Apps 9

8.3 Getting support from Fabasoft and the community 152

8.4 Staying up to date 152

9 Releasing your Cloud App 155

9.1 About the release process 155

9.2 Submitting your app for review 155

9.3 Continuous integration environment tests 156

9.4 Code review 156

9.5 Getting feedback 156

10 Reaping the profits 159

10.1 About price tiers 159

10.2 Defining the stuff related to billing 159

10.3 Activity Points 159

10.4 Getting your money 162

11 Maintaining and improving your Cloud App 165

11.1 Updating Fabasoft app.ducx projects using Eclipse 165

11.2 Reacting to user feedback and providing customer support 165

11.3 Releasing an updated version 166

12 Glossary 169

13 List of figures 171

14 Bibliography and useful links 175

 10 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 11

1 Getting started

1.1 What is Fabasoft Folio Cloud?

Fabasoft Folio Cloud is a public cloud service for efficient and secure online collaboration. The software
implements internationally recognized security standards such as ISO27001 and SAS 70 Type II to
guarantee the highest security standards and reliability, and features an intuitive user interface, which is
available in 16 different languages.

It is based on a compelling freemium model that brings you the Fabasoft Folio Cloud primo edition with all
the features needed for efficient online collaboration entirely free of charge while the premium editions with
advanced features and functionality come at a charge.

With Fabasoft Folio Cloud, you can access your data from anywhere in the world and at any time you
want, create new documents or upload files and securely share them with other people.

Protecting your confidential online data is of the utmost importance to us, and thanks to numerous security
features, encrypted data transfer and sophisticated authentication mechanisms, Fabasoft Folio Cloud
guarantees the highest safety and security levels for all your online activities.

Fabasoft Folio Cloud also offers some of the simplest and easiest ways of collaborating online. Within
minutes you can set up your teams, organize your project tasks and manage shared contacts,
appointments and documents. Team rooms and other collaboration features facilitate your online
collaboration experience – within your company as well as with international business partners, or with
friends at home and abroad.

In addition, Fabasoft Folio Cloud provides a robust and secure platform for fully fledged professional
business applications, supporting thousands of users via nifty, exciting and intuitive Cloud Apps that make
your online and mobile life easier and more enjoyable.

… And this is where you come into play: the Cloud App developer!

With Fabasoft app.ducx, Fabasoft app.test and Fabasoft app.telemetry you can easily and rapidly create
your own Cloud Apps, bring them online in Fabasoft Folio Cloud and make them available to thousands of
users!

1.2 What is Fabasoft app.ducx?

Fabasoft app.ducx is the agile, use case-oriented development platform for Cloud Apps. It has been
specifically designed to cover all your needs when developing Cloud Apps and supports you throughout
the entire software development life cycle. The efficient implementation of Cloud Apps is facilitated by
domain-specific languages.

Cloud App development requires managing different aspects and elements such as data structures, user
interface design, the implementation of methods and business rules. In order to account for this concept in
an optimal manner, Fabasoft app.ducx is comprised of several declarative modeling languages, each
designed for covering a particular aspect of solution development.

For example, Fabasoft app.ducx includes a modeling language that has been designed explicitly for the
definition of an object model. In addition to this, Fabasoft app.ducx includes languages for defining
resources, a user interface model, an implementation model, and a process model.

These modeling languages are referred to as domain-specific languages (DSLs), where each DSL was
designed for addressing a certain aspect of Cloud App development.

1.3 Who should read this book?

The answer is simple enough: You should read this book!

 12 Developing Fabasoft Folio Cloud Apps

At Fabasoft, we continuously strive to make Cloud App development as simple as humanly possible,
because we believe that anybody should be given the tools to be able to create vivid apps from great ideas
in a simple, rapid, agile and enjoyable way.

Even though this book is aimed primarily at software developers interested in exploring the tremendous
potential of Fabasoft Folio Cloud, you do not need to be a professional programmer to create your own
Cloud Apps.

As will be shown in the following chapters, all you need to get started is a basic understanding of a few
technologies related to web development and object-oriented programming.

This book assumes that you have some level of familiarity with web technologies, object-oriented
programming and Eclipse. Reading this book in conjunction with other books that are devoted specifically
to these topics may be useful if you are not already comfortable using these technologies. Furthermore,
the bibliography on page 175 provides some helpful resources.

For your convenience, concepts and technologies specific to Fabasoft Folio Cloud development are
explained in great detail throughout the book.

1.4 Why develop Cloud Apps?

Now that you have an understanding of the key features of Fabasoft Folio Cloud, you will probably ask:
How can I contribute, and what‟s in it for me?

Well, at Fabasoft we want to make it worth your while to put your creativity and time into developing Cloud
Apps. A revenue sharing model described in “Reaping the profits” on page 159 allows you to profit from the
success of Fabasoft Folio Cloud and, of course, your Cloud App.

But aside from monetary aspects, there are also the following benefits to consider:

 Simplicity, ease of use and style: The very essence of Fabasoft‟s cloud development paradigm is to
make it as simple as possible for users to navigate Fabasoft Folio Cloud. To deliver an exceptional
online experience to our users is of paramount importance to us. We want them to enjoy every
moment they spend using Fabasoft Folio Cloud and your Cloud App. Therefore we will relentlessly
continue to improve the simplicity, usability and style of Fabasoft Folio Cloud.

 Reduced time to market and reduced time to value: Fabasoft Folio Cloud is the greatest piece of
software Fabasoft has ever made. We‟re releasing updates at a pace and in a quality never seen
before. And you can do the same with your Cloud App, turning your ideas into success stories in
virtually no time at all.

 Agility: It‟s never been easier to respond to the ever changing requirements of your customers. As a
Cloud App developer you can instantly enjoy the benefits of the very latest features of Fabasoft Folio
Cloud without having to wait for months or years, as you would if relying on a traditional software
platform.

 Flexibility and freedom: With Fabasoft Folio Cloud, you‟re no longer a slave to rigid departmental
software policies, tight budgets and other questionable impediments. As a Cloud App developer, you‟re
in total control of an incredibly powerful software platform so you can build the Cloud App that allows
your customers, team members and peers to get their jobs done more efficiently, and to make things
easier and more enjoyable for all of us.

 Stability and scalability: Over 20 years of experience in both the public and private sector allowed us to
build the rock-solid architecture required to support an infrastructure capable of hosting thousands and
thousands of users managing and exchanging billions of documents. You can rely on Fabasoft Folio
Cloud, 24/7 and 365 days a year, and never have to worry about infrastructure again.

These are bold statements. But we are absolutely sure that with Fabasoft Folio Cloud we give you the
ultimate platform for your Cloud App to thrive on. Give it a try! Oh, and we haven‟t even mentioned the best
reason for building a Cloud App yet: It‟s really good fun!

 Developing Fabasoft Folio Cloud Apps 13

1.5 What do you need to get started?

Getting started is easy!

The following check list outlines what you need to do to be able to develop your own Cloud Apps for
Fabasoft Folio Cloud:

1. Get a free Fabasoft Folio Cloud account:
The first step is to sign up for a free Fabasoft Folio Cloud account at

https://www.fabasoft.com/register. For further information about the registration process

and a detailed description of the key features of Fabasoft Folio Cloud refer to the chapter “Diving into
Fabasoft Folio Cloud” on page 17.

2. Sign up for Cloud App Development:
Get a subscription to the Fabasoft Folio Cloud App Development package from the Fabasoft Folio

Cloud App Store (see http://developer.foliocloud.com/editions/shop). Refer to the

chapter “Getting a Cloud App Development subscription” on page 25 to learn more about the Fabasoft
Folio Cloud App Development package.

3. Get the Cloud App VDE:
The Virtual Development Environment (VDE) for Cloud Apps is your own sandbox that you can use for
developing and testing your Cloud App. To get a subscription for the Cloud App VDE, point your

browser to http://developer.foliocloud.com/editions/shop where you will find a link to

the app in the Fabasoft Folio Cloud App Store. The chapter “Getting a Cloud App VDE subscription” on
page 25 explains how to get a subscription for the Cloud App VDE, and in the chapter “Working with
the Cloud App VDE” on page 35 you will learn everything you need to know about it.

4. Get the Eclipse IDE:
Eclipse can be downloaded free of charge from the Eclipse web site [Ecli11]. For further information
refer to the chapter “Installing the Eclipse IDE” on page 33.

5. Install the Fabasoft app.ducx plug-in for Eclipse:
Fabasoft app.ducx is the development environment for implementing Cloud Apps. Add an Eclipse

update site and point it to http://update.appducx.com to download and install the Fabasoft

app.ducx plug-in for Eclipse. To learn how to install the Fabasoft app.ducx plug-in for Eclipse refer to
the chapter “Installing the Fabasoft app.ducx plug-in” on page 33.

6. Install Fabasoft app.test Studio primo:
Fabasoft app.test is the tool for creating and managing automated tests for your Cloud Apps. To learn
how to install Fabasoft app.test Studio primo refer to the chapter “Installing Fabasoft app.test Studio
primo” on page 138.

That‟s it! These six simple steps will get you on your way. And from there, it won‟t be long until your first
Cloud App goes live in Fabasoft Folio Cloud.

Figure 1: The steps for getting started

 14 Developing Fabasoft Folio Cloud Apps

By the way, links to all those resources mentioned above can be found in the public team room named
“Fabasoft Folio Cloud” (see chapter “Fabasoft Folio Cloud update cycle” on page 26). In the folder
“Fabasoft app.ducx for Cloud Development” in this team room you will also find a preconfigured Eclipse
IDE with the app.ducx plug-in installed. To access this team room, search for a team room named
“Fabasoft Folio Cloud” or use the following URL:
https://folio.fabasoft.com/folio/mx/COO.6505.100.2.530437

1.6 Which software do you need on your computer?

This is all you need in terms of locally installed software to start developing Cloud Apps:

 Mozilla Firefox 4.0
or
Microsoft Internet Explorer 8.0 or 9.0

 Oracle Java SE Runtime Environment 6 Update 23 (JRE) (see [Orac11a])

 Eclipse 3.6.1 (see [Ecli11])

 Fabasoft app.ducx plug-in (see chapter “Installing the Fabasoft app.ducx plug-in” on page 33)

 Fabasoft app.test Studio primo (see chapter “Installing Fabasoft app.test Studio primo” on page 138)

1.7 What is covered by this book?

This book will give you a solid overview of Cloud App development for Fabasoft Folio Cloud.

After reading this, you will have all the information you need to be able to develop your own Cloud Apps
and have them deployed in Fabasoft Folio Cloud.

Nevertheless, while trying to cover all the relevant aspects of Cloud App development, this book is not the
compendium of all human knowledge about it.

Therefore, we strongly recommend considering the following reading material:

 For an in-depth discussion of Fabasoft app.ducx and its domain-specific languages for Cloud App
development refer to [Faba11a].

 To learn all the details and specifics about Fabasoft app.test refer to [Faba11b]. Furthermore, have a
look at [Faba11c] to learn how to create solid tests for your Cloud App.

Also, refer to the list of resources in chapter “Getting help, code samples and support” on page 151 if you
run into a problem or need further help.

1.8 General remarks concerning examples

The examples used throughout this book contain code fragments that were specifically created as
examples to highlight the use of a particular concept or aspect of Cloud App development with Fabasoft
app.ducx or Fabasoft app.test.

Please be aware that not all examples in this book are completely self-contained. In order to save space,
certain parts have been omitted in some of the examples. Omissions are usually indicated by a line of dots.

Also, comments in the source code are only included where we want to highlight newly introduced
concepts. In repeating code examples, comments are generally applied to the latest additions only.

However, the full source code for all the samples presented in this book, along with many other useful
samples and the source code of actual Cloud Apps that are in production in Fabasoft Folio Cloud, are
available to you in the public Subversion repository of Fabasoft. For further information refer to the chapter
“Retrieving code samples from the public Subversion repository” on page 151.

 16 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 17

2 Diving into Fabasoft Folio Cloud

The very first thing you need in order to get started is to get a Fabasoft Folio Cloud account at

https://www.fabasoft.com/register.

Did we mention already that it‟s entirely free to get a Fabasoft Folio Cloud primo account?

No hidden costs, no ads, no nag screens.

2.1 Fabasoft Folio Cloud editions

Fabasoft Folio Cloud is based on a freemium model. The Fabasoft Folio Cloud primo edition,
encompassing all basic features needed for efficient online collaboration, is entirely free of charge while
the premium editions, with advanced features, functionality, more Cloud Apps and more online storage
space, come at a charge.

Here is an overview of the different editions of Fabasoft Folio Cloud:

 Fabasoft Folio Cloud primo is the free, basic platform for online collaboration including 1 GB of online
storage and a limit of 1,000 objects. Fabasoft Folio Cloud primo includes team rooms for secure online
collaboration, management of multimedia contents, Microsoft Office, OpenOffice.org and Apple iWork
documents, CalDAV calendar integration, WebDAV and CMIS support and much more. Its intuitive
web interface is available in 16 languages, and it supports encrypted connection via HTTPS for
security.

 Fabasoft Folio Cloud allegro is our comfort edition with more online storage and mobile search for
devices like the Apple iPhone or BlackBerry.

 The Fabasoft Folio Cloud leggero is the professional platform for online business collaboration
featuring CRM, two-factor authentication, complete versioning and auditing. Security levels (Protective
Markings) and secure team rooms allow for the utmost in online collaboration security.

The Fabasoft Folio Cloud app store is available to all users of Fabasoft Folio Cloud. Also users of the free
Fabasoft Folio Cloud primo edition can buy your Cloud Apps from the Fabasoft Folio Cloud app store once
your Cloud App is released.

 18 Developing Fabasoft Folio Cloud Apps

2.2 Registration and account setup

Figure 2: The login screen of Fabasoft Folio Cloud

To start the registration process for Fabasoft Folio Cloud, go to

https://www.fabasoft.com/register, enter your name, e-mail address and country and click

“Next”. During the registration process, a verification e-mail is sent to the e-mail address you provided
asking you to confirm it and to create a password.

After creating your password you will receive a confirmation e-mail saying that you have successfully
completed the registration. The e-mail also contains some useful links to quick tours and other resources.

To log in to Fabasoft Folio Cloud, point your browser to https://folio.fabasoft.com/folio, enter

your username and password and click “Login” (see Figure 2).

2.2.1 Logging in using an OpenID account

You can also use your OpenID account to log in to Fabasoft Folio Cloud.

OpenID is an open standard for the decentralized authentication of users. An OpenID takes the form of a
unique URL managed by an OpenID provider that handles the authentication process.

The following OpenID providers are supported by Fabasoft Folio Cloud: myopenid.com, myid.net,

flickr.com, verisignlabs.com, and clavid.com.

Before you can use your OpenID account to log in, you have to provide your OpenID URL in the account
settings dialog of Fabasoft Folio Cloud. To open the account settings dialog, click “Account” in the upper
right area of the Fabasoft Folio Cloud portal and click on “Login and Password”. Then enter your OpenID
URL in the OpenID property and click “Change OpenID” (see Figure 3).

 Developing Fabasoft Folio Cloud Apps 19

Figure 3: Entering your OpenID account name in the account settings

2.2.2 Logging in using a certificate

Fabasoft Folio Cloud also supports certificate-based authentication for the members of an organization.
For more information on certificate-based authentication refer to the Fabasoft Folio Cloud online help.

2.2.3 Logging in using mobile PIN

In addition to one of the basic authentication methods, you can also request mobile PIN authentication for
additional security.

With activated mobile PIN authentication, a mobile PIN is sent to your mobile phone via SMS every time
you start the login process. In order to continue, you have to provide the one-time passcode sent to your
mobile phone.

Mobile PIN authentication is included in Fabasoft Folio Cloud leggero edition and higher (see chapter
“Fabasoft Folio Cloud editions” on page 17).

On Apple iPhones Fabasoft Folio Cloud also supports Motoky authentication, a secure mobile
authentication method where you don‟t need to enter a PIN. You just accept a message sent to your phone
via Apple push notification.

For further information on mobile PIN authentication refer to the Fabasoft Folio Cloud online help.

2.3 The Fabasoft Folio Cloud portal

After logging in, you are taken to the Fabasoft Folio Cloud portal, where you are greeted with a welcome
screen showing you all the news about your account and your account activity.

The following chapters will give you a brief overview of the main portal pages of the Fabasoft Folio Cloud
portal. For further information refer to the Fabasoft Folio Cloud online help and the quick tours available at

http://www.foliocloud.com/quick-tour.

 20 Developing Fabasoft Folio Cloud Apps

2.3.1 The „Home‟ portal page

The “Home” portal page (see Figure 4) is the primary work area. Here you can create new team rooms for
online collaboration, folders, documents and other objects.

Figure 4: “Home” portal page of the Fabasoft Folio Cloud portal

2.3.2 The „Contacts‟ portal page

Figure 5: “Contacts” portal page of the Fabasoft Folio Cloud portal

 Developing Fabasoft Folio Cloud Apps 21

On the “Contacts” portal page (see Figure 5), you can manage your contacts and invite other users to
Fabasoft Folio Cloud. You can search for persons and add them into your contact list, or import your
existing contacts from Microsoft Outlook, Google Mail, Windows Live Hotmail or other sources. It is also
possible to remove a person from your contact list.

2.3.3 The „Mindbreeze‟ portal page

Figure 6: “Mindbreeze” portal page of the Fabasoft Folio Cloud portal

On the “Mindbreeze” portal page (see Figure 6), you can quickly and conveniently search in the full text of
all of your documents and objects in Fabasoft Folio Cloud using the integrated Fabasoft Mindbreeze
search client.

2.4 Sharing contents with others

You can conveniently share your online contents with others by creating team rooms and inviting other
persons to your ad-hoc teams.

All the documents, folders and other objects belonging to a team room are accessible by all members of
the team room. As the owner of a team room, you can give others read access, change access or full
control. Users who have full control over a team room can also delegate access rights to others on your
behalf.

If you want to work together with a person not registered for Fabasoft Folio Cloud yet, you can invite them
to join via a team room.

The “Cloud App Team Room” quick tour (available at http://www.foliocloud.com/quick-tour)

walks you through the steps necessary to create and manage a team room, and shows you how to
securely share documents with other persons.

2.5 Join the community!

With your Fabasoft Folio Cloud account, you can also participate in discussions on the Fabasoft Folio

Cloud community web site at http://www.foliocloud.com/community. Share your knowledge, best

practices and helpful tips with others and get answers to your questions.

 22 Developing Fabasoft Folio Cloud Apps

On the community web site, you can also find a link to a list of frequently asked questions about Fabasoft

Folio Cloud along with detailed answers (see http://www.foliocloud.com/faq).

In addition to that, the following community resources are available to you:

 In the Fabasoft Folio Cloud Forum (http://www.foliocloud.com/support/forum) users of all

backgrounds come together to discuss tips, tricks and knowledge about Fabasoft Folio Cloud.

 In the Fabasoft Folio Cloud Wiki (http://www.foliocloud.com/support/wiki) you can find a

large repository of articles about Fabasoft Folio Cloud and contribute by creating new articles where
you share your own Fabasoft Folio Cloud tips and tricks with others.

 Visit the Fabasoft Folio Cloud Blog (http://blog.foliocloud.com) and skim through our Cloud

experts‟ posts presenting the latest features, news about upcoming events and webinars as well as
other interesting Cloud topics.

 Subscribe to the Fabasoft Folio Cloud Newsletter (http://www.foliocloud.com/newsletter) to

get all the latest Cloud news delivered to your inbox.

 Follow us on Twitter (http://twitter.com/FolioCloud).

2.6 Invite others to join the Fabasoft Folio Cloud!

If you like Fabasoft Folio Cloud, why not tell others about it and make some money by recommending
Fabasoft Folio Cloud to your friends and colleagues?

Participate in the Fabasoft Folio Cloud Affiliate Marketing Program and make a couple of bucks for every
recommended user who registers and starts working with Fabasoft Folio Cloud!

For detailed information regarding the Fabasoft Folio Cloud Affiliate Marketing Program refer to

http://www.foliocloud.com/affiliatemarketingagreement.

 24 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 25

3 Starting your Cloud App development project

In this chapter, we explain what you need to do in terms of preparation steps before you can begin with the
actual development work. Furthermore, we tell you a little bit about the Fabasoft Folio Cloud update cycle
and what it takes to get your Cloud App into the Cloud App Store.

3.1 Getting a Cloud App Development subscription

In order to be able to develop Cloud Apps, you need an active subscription to the Fabasoft Folio Cloud
App Development package.

To get a subscription to the Fabasoft Folio Cloud App Development package, point your browser to the

Fabasoft Folio Cloud Developer site at http://developer.foliocloud.com/editions/shop and

select “Cloud App Development”. Pick a subscription to the Cloud App Development package, add it to
your cart and complete the checkout process (see Figure 7).

At the time of writing, Fabasoft is giving away the Cloud App Development package free of charge, but this
may change at a later date – so hurry and get your subscription while it‟s still free!

Figure 7: Getting a subscription to the “Cloud App Development” package

3.2 Getting a Cloud App VDE subscription

While the Fabasoft Folio Cloud App Development package discussed in the previous chapter gives you the
basic ability to implement Cloud Apps for the Fabasoft Folio Cloud, it does not provide you with a sandbox

 26 Developing Fabasoft Folio Cloud Apps

so that you can actually try out the stuff you implement in a test environment similar to the actual Fabasoft
Folio Cloud.

Indeed, coding is just one piece of the puzzle. Having a sandbox environment to execute and test your
Cloud App prototype is another puzzle piece.

The Fabasoft Folio Cloud App VDE (an acronym for “Virtual Development Environment”) is a platform-as-
a-service solution for testing and playing around with your Cloud App prototype. It comprises a
preconfigured Fabasoft Folio Cloud environment similar to the real production environment where you can
deploy, execute and test your Cloud App. Moreover, it includes Fabasoft app.test for creating and running
automated tests and Fabasoft app.telemetry for analyzing and pinning down performance bottlenecks.

We believe that you‟ll instantly fall in love with the convenience of using the Fabasoft Folio Cloud App VDE
as you no longer have to worry about hardware, full hard disks, memory shortages, troublesome software
installations and updates. This way, you can put the full focus on your Cloud App while we take care of
everything else.

To get a subscription to the Fabasoft Folio Cloud App VDE package, browse to the Fabasoft Folio Cloud

Developer site at http://developer.foliocloud.com/editions/shop and select “Cloud App

VDE”. Pick a subscription to the Cloud App VDE package, add it to your cart and complete the checkout
process.

After completing the checkout, you have to create a “Virtual Development Environment” object in Fabasoft
Folio Cloud to retrieve the URL of your new Fabasoft Folio Cloud App VDE. For further information refer to
the chapter “Working with the Cloud App VDE” on page 35.

3.3 Legal aspects of Cloud App development

As a Cloud App developer you have a lot of freedom, but also some responsibilities.

So there is some legal mumbo jumbo that you have to accept to be able to complete the checkout of the
Cloud App Development package subscription.

What it all boils down to is this:

 You must not violate copyright law or any other laws. The source code, template content and other
stuff you check in or submit to Fabasoft must be in line with the law.

 Once your Cloud App goes live, you have to actively contribute to supporting it: If something is broken
or breaks after an update, you are responsible for fixing it.

 You have to monitor the project inbox of the Scrum project for your Cloud App and process any stories
that come in (see chapter “Managing your development project with Scrum” on page 28). Of course,
we also encourage you to evaluate and implement user feedback for the improvement of your Cloud
App.

Note: The exact details of your rights and responsibilities as a Cloud App developer are detailed in the
Fabasoft Folio Cloud developer agreement, available in its latest form at

http://www.foliocloud.com/developeragreement.

3.4 Fabasoft Folio Cloud update cycle

For Fabasoft Folio Cloud, we‟re sticking to a release plan that is carved in stone: Every month, we bring
you and the other users an updated version of Fabasoft Folio Cloud so you can always enjoy the latest and
greatest that Fabasoft has to offer.

The list of scheduled updates for Fabasoft Folio Cloud is available in the “Fabasoft Folio Cloud” Scrum
project that is part of the public team room named “Fabasoft Folio Cloud” (see Figure 8).

To access this team room, search for a team room named “Fabasoft Folio Cloud” or use the following URL:
https://folio.fabasoft.com/folio/mx/COO.6505.100.2.530437

 Developing Fabasoft Folio Cloud Apps 27

Figure 8: Fabasoft Folio Cloud release plan

Figure 9: Fabasoft Folio Cloud release calendar

The “Fabasoft Folio Cloud” team room also contains a calendar (depicted in Figure 9) that shows the dates
of all important events regarding Fabasoft Folio Cloud App development.

The monthly release cycle of Fabasoft Folio Cloud is not just good news for users, but also for you as a
Cloud App developer, as every Fabasoft Folio update is a potential launch window for your Cloud App.

A Cloud App can only go live with one of the scheduled updates of Fabasoft Folio Cloud. If your Cloud App
passes the release process outlined in the chapter “Releasing your Cloud App” on page 155, it will be
released to the public during the next scheduled update of Fabasoft Folio Cloud.

 28 Developing Fabasoft Folio Cloud Apps

Note: As a rule of thumb, you must submit your Cloud App about two weeks before the next scheduled
update of Fabasoft Folio Cloud for it to be included in that update. Otherwise, it will be included in the
update following the next update. For further details refer to [Faba11d].

If you want to release an updated version of a Cloud App that is already live in the Fabasoft Folio Cloud,
your update has to go through another release process and again, if successfully completed, will be
installed during the next scheduled update of Fabasoft Folio Cloud (see chapter “Releasing an updated
version” on page 166).

Despite our joint efforts to produce top quality Cloud Apps, it might happen that a bug is not discovered
before your Cloud App is released. Therefore, if a critical defect is discovered in your Cloud App, we may
ask you to provide a hotfix that will be applied during a maintenance window outside of the usual update
cycle.

3.5 Managing your development project with Scrum

3.5.1 What is Scrum?

According to [ScrA09], “Scrum is an agile framework for completing complex projects. Scrum was originally
formalized for software development projects, but works well for any complex, innovative scope of work”.

Figure 10: The Scrum methodology

There is an abundance of literature available on Scrum, so we will not elaborate on the methodology itself.
[ScrA09] gives you a concise overview of Scrum and is also a good starting point for finding further reading
on the methodology.

At Fabasoft, we use the Scrum methodology (outlined in Figure 10) throughout the entire company for
developing and managing our software products and services, and we strongly believe that the benefits of
this agile state-of-the-art methodology allow you to build better, more reliable software than traditional
methodologies.

And then there‟s also the advantage of Scrum that we value most of all: It makes you stick to your
timetable, which is imperative for Fabasoft Folio Cloud development. There‟s an update schedule carved in
stone, remember? And in order to meet the deadlines for your Cloud App, so you can capitalize on it as
soon as possible, you want a proven, efficient and agile iterative methodology that guides you through the
development process.

 Developing Fabasoft Folio Cloud Apps 29

3.5.2 The “Scrum Projects” Cloud App

Fabasoft Folio Cloud primo edition comes with the full-featured Scrum project management Cloud App that
allows you to manage your Cloud App development project.

Even though you are free to pick whatever approach you like for managing your Cloud App development
project, we strongly suggest that you follow the Scrum methodology.

We also require you to create a Scrum project for your Cloud App to track any stories associated with it.
Whenever a user runs into a problem and sends a support request regarding your Cloud App to Fabasoft
Support, a story is created in the Scrum project for your Cloud App and you are required to process it as
soon as possible.

For a detailed step-by-step tutorial on how to activate and use the Scrum Cloud App refer to the online
help of the Cloud App “Scrum Projects” of Fabasoft Folio Cloud and the quick tour at

http://www.foliocloud.com/apps/scrum.

3.6 What you need to do to get your Cloud App deployed

Only Fabasoft can deploy Cloud Apps into Fabasoft Folio Cloud.

Before your Cloud App will be deployed into Fabasoft Folio Cloud, you have to submit it to Fabasoft for
review.

Figure 11: Required deliverables to get your Cloud App deployed

As outlined in Figure 11, the following deliverables are required so that you can submit your Cloud App for
review:

 Finished Cloud App: Only a completed, self-contained, full-featured Cloud App may be deployed into
Fabasoft Folio Cloud.

 100 % documentation ratio: Your source code must be fully documented in English language. The
target is to reach a documentation ratio of 100 %.

 Zero defects: There must be no open defects in the Scrum backlog for your Cloud App.

 30 Developing Fabasoft Folio Cloud Apps

 Fabasoft app.test tests and unit tests yielding 100 % code coverage: Your Fabasoft app.test tests and
unit tests must cover your entire Cloud App‟s source code. The target is to reach a coverage ratio of
100 %.

Once you finished your work on your Cloud App and have all the required deliverables in place, you can
submit it for review by Fabasoft.

After reviewing your submission, Fabasoft will notify you of the result. If your Cloud App passes the review,
it will be included in the next scheduled update of Fabasoft Folio Cloud and the Fabasoft Folio Cloud App
Store. If it doesn‟t pass, an issue report will be created for you so that you can fix the issues pointed out in
the report and resubmit your Cloud App for another review.

For further details about the release process refer to the chapter “Releasing your Cloud App” on page 155.

 32 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 33

4 Setting up the development environment

Before you can get started with the implementation of your Cloud App, you need to set up your
development environment.

More precisely, you have to install Eclipse and the Fabasoft app.ducx plug-in on your computer so you can
start coding. Additionally, you need to install Fabasoft app.test Studio primo to be able to create automated
tests for your Cloud App.

4.1 Installing the Eclipse IDE

Eclipse is a software development environment featuring an integrated development environment (IDE)
and an extensible plug-in system.

Eclipse can be downloaded free of charge from the Eclipse web site

http://www.eclipse.org/downloads [Ecli11]. Any edition is fine, so you can pick either Eclipse

Classic or the Eclipse IDE for Java, PHP or C++ developers.

Note: You can also download a preconfigured Eclipse version from the “Fabasoft Folio Cloud” team room
(see chapter “Fabasoft Folio Cloud update cycle” on page 26). For you convenience, the Fabasoft
app.ducx plug-in is already pre-installed in this version.

Eclipse requires the Oracle Java Runtime Environment (JRE), which can be obtained from the

http://www.java.com/download web site [Orac11a].

Eclipse uses so-called features to package plug-ins and allow for full integration with the Eclipse platform.
Fabasoft app.ducx provides a feature group that must be installed before it can be used with Eclipse.

4.2 Installing the Fabasoft app.ducx plug-in

Fabasoft app.ducx is packaged as a feature group consisting of multiple Eclipse features and plug-ins. For
the sake of simplicity, this book sometimes refers to the entire collection of plug-ins making up Fabasoft
app.ducx as “the Fabasoft app.ducx plug-in”.

You can install the Fabasoft app.ducx feature by opening the “Help” menu in Eclipse and clicking “Install

New Software”. Click “Add”. In the following dialog, enter http://update.appducx.com in the Location

field and click “OK”.

Select the “Fabasoft app.ducx” feature group and click “Next”. Then click “Finish” to install Fabasoft
app.ducx.

Note: Make sure that your proxy server (if necessary) is configured correctly in Eclipse (“Window” >
“Preferences” > “General” > “Network Connections”) and that you are connected to the Internet, when
installing the app.ducx plug-in (if your Eclipse installation does not meet all prerequisites, missing features
are downloaded from the Internet, too).

 34 Developing Fabasoft Folio Cloud Apps

Figure 12: Specifying a new update site in Eclipse

4.2.1 Updating the Fabasoft app.ducx plug-in

The Fabasoft app.ducx plug-in for Eclipse is continuously improved and periodically released by Fabasoft.
Every two weeks, the latest version is made available for download from

http://update.appducx.com.

In order to benefit from all the improvements implemented by Fabasoft, you should always keep your
Fabasoft app.ducx plug-in up to date and regularly check for updates.

To update the Fabasoft app.ducx plug-in installed on your local computer, simply select “Check for
Updates” from the “Help” menu in Eclipse and follow the steps of the update wizard.

4.2.2 Improving the performance of Eclipse

To improve the performance of your Eclipse environment, edit the eclipse.ini file found in the Eclipse

installation folder and assign sufficient memory to the Java virtual machine by setting the -Xms and -Xmx

parameters to an adequate value (e.g. “896m” or “1g”).

If you‟re using the 32 bit edition of Eclipse, set the -Xmx parameter to at least 900 MB of memory, and for

the 64 bit edition to at least 1.5 GB of memory.

The rule thumb is “the bigger, the better” when it comes to memory allocation. If you have sufficient free
memory available on your machine, consider using the 64 bit edition of Eclipse.

 Developing Fabasoft Folio Cloud Apps 35

Additionally we recommend using the so called “G1 Garbage Collector” which also has to be activated

explicitly in your eclipse.ini file.

Example

-showsplash

org.eclipse.platform

--launcher.XXMaxPermSize

256m

-vmargs

-Xms256m

-Xmx1536m

-XX:+UnlockExperimentalVMOptions

-XX:+UseG1GCC

4.3 Working with the Cloud App VDE

After getting a Fabasoft Folio Cloud App VDE subscription, you have to create a “Virtual Development
Environment” object in Fabasoft Folio Cloud. You can create the “Virtual Development Environment” object
on your home screen or in a folder of your choice.

When creating the “Virtual Development Environment” object, you are prompted to enter a password,
which you have to use for accessing your Cloud App VDE later on. Then click “Next” to save your changes.

In the next step, select “Request Virtual Development Environment” from the context menu of the “Virtual
Development Environment” object to initialize your new Cloud App VDE.

Note: You may only have one Cloud App VDE. Attempting to request additional Cloud App VDEs will fail.

To obtain the URL for accessing the self-service portal of your Cloud App VDE (depicted in Figure 13),
double-click the “Virtual Development Environment” object and click the URL displayed in the Self-Service
Portal URL property.

The URL has the following format: https://folio.fabasoft.com/dev<X>/vm<Y>/

Note: The placeholders <X> and <Y> contain the actual IDs assigned to your personal Cloud App VDE.

When connecting to the Cloud App VDE self-service portal, you are prompted for your credentials. Enter

the user name developer and the password you have provided when creating the “Virtual Development

Environment” object.

The self-service portal allows you to carry out the following tasks:

 Restart Services: This will restart the web services of the Cloud Sandbox. A restart of the web services
should solve problem situations where the Fabasoft Folio Cloud portal does not respond anymore, e.g.
due to an infinite loop in your Cloud App.

 Restart Virtual Machine: This will restart the entire virtual machine (VM). A restart of the VM should
only be required in exceptional cases.

 View Trace Output: This allows you to view the trace output of the tracer. To learn more about tracing
refer to the chapter “Tracing and debugging” on page 128.

 Fabasoft Folio Cloud Sandbox: This link is a redirect to your Cloud Sandbox. You can directly access
the Cloud Sandbox by clicking the URL displayed in the Cloud Sandbox URL property of your

development project or using the URL https://folio.fabasoft.com/dev<X>/vm<Y>/folio

(be sure to replace the placeholders <X> and <Y> with the actual IDs of your Cloud App VDE)

 Fabasoft app.telemetry: This link starts the Fabasoft app.telemetry management interface, which
allows you to monitor your VM and identify performance issues caused by your Cloud App. For further
information refer to the chapter “Fabasoft app.telemetry” on page 37.

 36 Developing Fabasoft Folio Cloud Apps

 Set passwords: This allows you to set the password of your developer user as well as of all the test

users. You can also change the passwords by selecting “Set Password” in the context menu of your
“Virtual Development Environment” object.

Figure 13: Fabasoft Folio Cloud App VDE self-service portal

Note: Your Cloud App VDE is automatically wiped and updated before every update of the Fabasoft Folio
Cloud. This will allow you to adjust your Cloud App to the latest version of Fabasoft Folio Cloud before the
actual update. Refer to the calendar in the “Fabasoft Folio Cloud” team room to find out when the updates
of your Cloud App VDE will take place (see chapter “Fabasoft Folio Cloud update cycle” on page 26). You
are also notified via e-mail about upcoming updates.

Fabasoft reserves the right to reset your Cloud App VDE at any time. You can also reset it manually. After
an update or reset of your Cloud App VDE, all data is lost.

Therefore, we strongly recommend using Fabasoft app.test tests to create the test data structures you
need for testing your Cloud App. Do not create test data structures manually as you will have to recreate
all of your test data after every update or reset of your Cloud App VDE.

Also note that your Cloud App VDE will not be backed up, and Fabasoft does not guarantee any service
levels for it. The maximum size of the Cloud App VDE, including operating system and services is limited
to 15 GB. For further details refer to [Faba11d].

 Developing Fabasoft Folio Cloud Apps 37

4.3.1 Fabasoft Folio Cloud Sandbox

If you click the “Fabasoft Folio Cloud Sandbox” link in the self-service portal, you are redirected to the
Cloud Sandbox (see Figure 14), which is a Fabasoft Folio Cloud installation similar to the production
environment, and logged in as a “developer” user.

Figure 14: Fabasoft Folio Cloud Sandbox

To log in with a different user account, start a new browser session and use the URL referring directly to

the Cloud Sandbox: https://folio.fabasoft.com/dev<X>/vm<Y>/folio

There are several preconfigured test users available for accessing the Cloud Sandbox. For the remainder

of this book, we will use a user named Wanda Carney with the user account carney0001.

Refer to the table in [Faba11c] for a complete list of the available test user accounts. All test user accounts
share the same password, which you can define in the self-service portal.

For each test user, there are ten distinct, sequentially numbered user accounts available (e.g.

carney0001, carney0002 and so on). The main reason for this is to facilitate the execution of Fabasoft

app.test tests in different scopes. For further information on recording and running Fabasoft app.test tests
refer to the chapter “Testing your Cloud App” on page 133.

Different test users have subscriptions for different editions of Fabasoft Folio Cloud. If your Cloud App
requires a certain edition of Fabasoft Folio Cloud as a prerequisite, pick a test user with the desired edition
when conducting manual tests or when creating Fabasoft app.test tests.

Note: The test users do not have access to the Fabasoft Cloud App VDE self-service portal. With a test
user account, you can only access the Cloud Sandbox.

4.3.2 Fabasoft app.telemetry

In a nutshell, Fabasoft app.telemetry helps you to identify performance bottlenecks in your Cloud App.

While the full-featured edition of Fabasoft app.telemetry is an integrated solution for service level
management, application performance management and helpdesk support that can do much more than
that, Fabasoft app.telemetry primo edition, which is included in your Cloud App VDE, is specifically

 38 Developing Fabasoft Folio Cloud Apps

designed to allow you to track down and resolve potential performance issues in your Cloud App before
they can arise in the production environment.

Note: The Fabasoft app.telemetry primo edition only allows you to monitor the requests of the last five
minutes.

When you click on the “Fabasoft app.telemetry” link in the self-service portal of your Cloud App VDE, you
are redirected to the Fabasoft app.telemetry dashboard depicted in Figure 15:

 On the “Telemetry” portal pane, you can analyze the performance of your Cloud App. Fabasoft
app.telemetry automatically records telemetry data for all requests to your Cloud Sandbox as they are
being processed by the server. You can then drill down into suspicious or time-consuming requests in
order to pinpoint potential performance issues in your Cloud App.

 The “Dashboard” portal pane gives you an overview of the key performance indicators for your VM,
including processor time, memory and disk usage as well as the number of requests processed by the
Cloud Sandbox and the average request duration.

 The “Status” portal pane provides an overview of the server health checks continuously carried out by
Fabasoft app.telemetry to detect any problems with your VM.

 On the “Top X” portal pane, you can analyze the most time-consuming and error prone requests in
order to be able to quickly eliminate the biggest performance bottlenecks in your Cloud App.

Figure 15: Fabasoft app.telemetry dashboard

For a detailed walkthrough on how to analyze a Fabasoft app.telemetry session refer to the “Fabasoft
app.telemetry Getting Started for Developers” guide at

http://www.apptelemetry.com/documentation.

 40 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 41

5 Creating your Cloud App

In this chapter, we present the sample Cloud App we‟re going to use for the remainder of this book as well
as the steps you need to carry out before you can actually start coding.

In the previous chapters, you‟ve learned all about the preparation of your development environment.

But now it‟s finally time to get started with your very first Cloud App!

5.1 Introducing your first Cloud App

The sample we‟ve chosen for this book is a driver‟s logbook to allow users to record the trips they make
with their vehicles.

Simply put, we‟re going to build a Cloud App for recording and tracking vehicle mileage which can be used
to get a deduction on your income tax return or to get reimbursement from your company.

Figure 16 shows a simplified UML class diagram of this sample.

The following requirements must be met:

 The object model of this Cloud App consists of two classes, logbook and trip log.

 A logbook contains trip logs, which are collections of recorded trips.

 For each trip, the information listed in Table 1 is recorded.

 Users can create and manage as many logbooks as they wish.

 When creating a logbook, a trip log is automatically created within the logbook.

 Legislation requires that recorded trips must not be changed anymore, but users can cancel the last
recorded trip in the trip log.

Figure 16: Class diagram of the logbook sample

Property Name Data Type Reference Remarks

Departure on/at datetime trpdepartureat Date and time when the trip is started

Arrival on/at datetime trparrivalat Date and time of arrival

Place of Departure string trpdepartureplace The name of the place where the trip is
started

Destination string trpdestinationplace The name of the destination

 42 Developing Fabasoft Folio Cloud Apps

Starting Mileage float trpstartmileage The vehicle‟s odometer reading before
starting the trip

Ending Mileage float trpendmileage The vehicle‟s odometer reading upon arrival

Purpose string trppurpose A brief description of the purpose of the trip

Type of Trip object trptype One of the following options describing the
type of the trip: “Private”, “Business” or
“Commute”

Driver string trpdrivername The name of the driver

Canceled boolean trpcanceled A flag indicating whether the trip was
recorded in error and, therefore, canceled

Table 1: Data structure for recorded trips

5.2 Creating the development project

The first steps in a Cloud App development project are carried out from within your Fabasoft Folio Cloud

portal. Therefore, browse to https://folio.fabasoft.com/folio and login to Fabasoft Folio Cloud.

Then carry out the following steps:

1. Create a new team room by selecting “Create Team Room” from the “Object” menu or by clicking the
“Create Team Room” button.

2. Enter a name for your new team room, e.g. “My Cloud Apps”, and select “App Development” in the
Type property, then click “Next” to finish creating your new team room.

3. Open the “My Cloud Apps” team room by double-clicking it and select “New” from the “Object” menu or
click the “Create a new object” button.

4. Select “Development Project” from the list of createable objects and click “Next”. In the next dialog,
enter a name for the new “Development Project”, e.g. “Driver‟s Logbook”, and click “Next”.

5. Edit the properties of the new development project object (see Figure 17) and enter “FSCLOGBOOK”
in the Reference property as well as a copyright text and a description.

Every Cloud App needs a unique reference, which is roughly similar to a namespace. Therefore, the
reference you provide in the Reference property must meet certain naming conventions (e.g. it should be
composed of upper case characters only, must not contain special characters and must begin with an
alpha-numeric character in the range from “A” to “Z”), and must be unique within Fabasoft Folio Cloud.

For further information on reference naming conventions refer to [Faba11a].

 Developing Fabasoft Folio Cloud Apps 43

Figure 17: Properties of a “Development Project”

On the “Statement” page, you have to enter all the data required for billing so you can actually get your
money when people buy Cloud App subscriptions or Activity Points for your Cloud App. Refer to the
chapter “Reaping the profits” on page 159 for all the information about making money with your Cloud App.

In the next step, select “Next” to save your changes and then “Publish” from the context menu of the
development project to create a skeleton project for your Cloud App in the Subversion repository of
Fabasoft Folio Cloud.

Before the skeleton project is generated, the reference you‟ve provided for your Cloud App is checked for
compliance with the naming conventions described before. Also, if there is already an existing software
component with the same reference you will be asked to choose a different reference. Of course, the
reference (as well as the rest of your code) also must not violate copyright law or be offensive in another
way.

After successfully publishing your development project, a URL to your project in the Subversion repository
is displayed in the Location property of the development project.

This URL has the following format:

https://folio.fabasoft.com/svn/apps/<unique ID>/trunk/<Cloud App reference>

In preparation for the next step, copy the URL that is displayed in the Location property of your
development project into the clipboard.

For the remainder of this book, we will use the following example URL to access the Subversion repository:

https://folio.fabasoft.com/svn/apps/FCB798DAF91D3911AB30860F534FADBA/trunk/FSC

LOGBOOK

5.3 Creating a release

For every release of your Cloud App, you have to create a release object in the Releases list of your
development project (i.e. when you start developing and before starting to work on subsequent updates).

 44 Developing Fabasoft Folio Cloud Apps

To create a release, double-click your development project to open it, select the Releases list and click
“Create Object”. In the dialog box that is opened, provide the version number for your release by entering
the respective values in the properties Major, Minor and Build (e.g. “1.0.0”).

After creating the release, select “Start Release” from its context menu (as shown in Figure 18). This
creates an internal marker in the Subversion repository.

Figure 18: Starting a release

5.4 Importing the Fabasoft app.ducx project in Eclipse

Now it‟s time to open Eclipse and import the skeleton project that was created for you.

However, before you import the project you should define the default Fabasoft Folio Cloud web service and
the default range service you want to use when developing.

5.4.1 Defining the default web service

Select “Preferences” from the “Window” menu and select the “Fabasoft app.ducx” tree node. Click the
“Edit” button next to “Default web service” and enter the URL of your Cloud Sandbox in the URL of the
Fabasoft Folio Web Service field in the dialog box that pops up.

For the remainder of this book, we will use the example URL

https://folio.fabasoft.com/dev2/vm23/folio, but you have to enter your own personal Cloud

Sandbox URL that was assigned to you.

Select “Basic” as authentication method and enter “developer” in the User name field along with the
password you assigned to the Cloud App VDE users (see chapter “Working with the Cloud App VDE” on
page 35).

Then click “OK” to close the dialog boxes.

 Developing Fabasoft Folio Cloud Apps 45

5.4.2 Defining the default range service

After defining the default web service for your Cloud Sandbox, you have to define the default range
service, which will automatically assign address ranges to you.

Every single object you define in your code is assigned a unique address. These addresses are managed
automatically by the Fabasoft app.ducx compiler, but in able to do so it needs to retrieve so-called address
ranges from a range service that assigns ranges of free addresses to you.

Click the “Edit” button next to the Default range service field and enter the URL

https://folio.fabasoft.com/folio. Select “Basic” as authentication method and provide your

Fabasoft Folio Cloud credentials in the User name and Password fields. Then click “OK” to close the dialog
box.

Note: Pay attention when providing the user credentials! When defining the default web service (as
described in the previous step), you have to use the “developer” user of your Cloud App VDE, whereas for
the default range service you need to provide your Fabasoft Folio Cloud user credentials.

In the “Preferences” dialog box, select “Automatically request new range”. Finally, click “OK” to save your
settings (see Figure 19).

Figure 19: Fabasoft app.ducx preferences

 46 Developing Fabasoft Folio Cloud Apps

5.4.3 Importing the Fabasoft app.ducx project from Subversion

You can import the app.ducx project directly from Subversion if you have installed “Subversive” – the

subversion plug-in for Eclipse (see http://www.eclipse.org/subversive).

In Eclipse, select “Import” from the “File” menu. In the “Import” dialog box that pops up, expand the “SVN”
branch, select “Project from SVN” and click “Next” (see Figure 20).

Figure 20: Selecting the Subversion project import wizard

In the “Checkout from SVN” dialog box depicted in Figure 21, paste the URL from the clipboard that is
pointing to your Cloud App project in the Subversion repository. Then enter your Fabasoft Folio Cloud
credentials in the User and Password fields of the Authentication box and click “Browse” to log in to the
Subversion repository.

 Developing Fabasoft Folio Cloud Apps 47

Figure 21: Entering the Subversion repository location information

In the “Select Resource” dialog box depicted in Figure 22, expand the “trunk” branch and the
“FSCLOGBOOK” branch underneath it, and select the “dev” branch. Then click “OK” to return to the
“Checkout from SVN” dialog box and click “Finish” to proceed with the import of your project from
Subversion.

 48 Developing Fabasoft Folio Cloud Apps

Figure 22: Selecting the “dev” branch

In the “Check Out As” dialog box that is opened next (see Figure 23), confirm the suggested “Check out as
project with the name specified” and click “Finish”.

Figure 23: Confirming the project name

 Developing Fabasoft Folio Cloud Apps 49

5.4.4 Selecting the address range

Figure 24: Selecting the address range file

After you have successfully imported your Cloud App project, select “Properties” from the context menu of
Project Explorer and select the “Fabasoft app.ducx” tree node in the “Preferences” dialog box (see Figure
24). In the Address file field, select the address range file that has been generated for you.

The name of the address range file starts with the .ducxranges prefix, e.g. .ducxranges.Andreas.

Hofmann.

Click “OK” to save your changes.

Note: If multiple developers need to work on the same project at the same time you have to create a
separate address range file for each developer. To create a new address range file, click “New” and enter
a filename. Before you start working on your project, make sure that your personal address range file is
selected in the Address file field.

For further information on how to manage address ranges refer to [Faba11a].

5.5 Accessing and managing the source code in Subversion

You can either use the Subversion command line tools to access your source code in the Subversion
repository of Fabasoft Folio Cloud or use a graphical Subversion client such as TortoiseSVN for Microsoft
Windows (depicted in Figure 25).

To connect to the Subversion repository, use the URL provided in the Location property of your
development project (see chapter “Creating the development project” on page 42) and your Fabasoft Folio
Cloud credentials.

Refer to [ApSF11] for detailed information on how to use Subversion to access and manage your source
code in the Subversion repository of Fabasoft Folio Cloud.

 50 Developing Fabasoft Folio Cloud Apps

Figure 25: Using the Repository Browser of TortoiseSVN to access your source code

 52 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 53

6 Implementing your Cloud App

Finally you‟ve arrived at the chapter where we‟re about to plunge knee deep into coding. So put your seat
belt on, pull out the “An Introduction to Fabasoft app.ducx” white paper [Faba11a] and make sure you‟re in
the “Fabasoft app.ducx” perspective in Eclipse (if not, select “Window” > “Open Perspective” > “Other” >
“Fabasoft app.ducx”).

If you carefully followed all the steps we described in the previous chapters you should now have a
skeleton project for your Cloud App in your Eclipse workspace and your screen should somehow look
similar to what can be seen in Figure 26.

And now, let the coding begin!

But wait a second… which programming language are we going to use to build our Cloud App?

Figure 26: Your Cloud App project in Eclipse

6.1 Introducing the domain-specific languages of Fabasoft app.ducx

Fabasoft app.ducx is based on a set of different modeling languages referred to as domain-specific lan-
guages (DSLs), where each DSL was designed for addressing a certain aspect of Cloud App development:

 The purpose of the app.ducx object model language is to define the persistent object model for your
Cloud App, such as object classes and properties.

 The app.ducx resource language allows you to define resources such as string objects, error
messages and symbols. Using the app.ducx resource language, you can create culture- and language-

 54 Developing Fabasoft Folio Cloud Apps

independent solutions as it allows you to avoid hard-coded, culture- and language-specific literals in
your solution.

 The app.ducx user interface language allows you to define forms, form pages, menu items and other
user interface elements for your object classes.

 The purpose of the app.ducx use case language is to define and implement use cases, and provide
method implementations for these use cases. Use cases can be implemented in app.ducx expression
language or as so-called virtual applications.

 The app.ducx business process language allows you to define the process model for your Cloud App
in order to describe and manage workflows.

 The purpose of the app.ducx customization language is to customize and tailor Fabasoft Folio Cloud
features provided out-of-the-box to the specific requirements of your Cloud App.

 app.ducx expression language is a distinct domain-specific language of Fabasoft app.ducx. app.ducx

expressions can be embedded inline in an expression block in other domain-specific languages.

app.ducx expression language is processed by the Fabasoft app.ducx compiler and transformed into
Fabasoft app.ducx Expressions, which are evaluated at runtime by the Fabasoft Folio Kernel.

In contrast to all the other DSLs of Fabasoft app.ducx, keywords, predefined functions and predefined
variables in app.ducx expression language are not case sensitive.

[Faba11a] provides a comprehensive discussion of the syntax and grammar of the Fabasoft app.ducx
DSLs, including app.ducx expression language and the query language for search queries.

6.2 Defining the object model

The object model is the first thing you have to define when building a Cloud App.

Using the app.ducx object model language, you can easily define the basic elements that make up the
object model:

 object classes

 properties and fields

 enumeration types

 structures

Every object model element in Fabasoft app.ducx, and also the other persistent model elements yet to be
presented in the following chapters (e.g. forms and form pages), must be assigned a unique reference (i.e.
a programming name for a particular object class or property). These references should follow the
reference naming conventions laid out in [Faba11a].

Object model elements may only be defined within an object model block in object model files with a

.ducx-om extension. The objmodel keyword denotes an object model block. It must be followed by the

reference of your Cloud App and curly braces.

You can organize the object model elements making up your Cloud App in as many object model files as
you wish. However, the skeleton project created for your Cloud App already contains a file named

model.ducx-om, which is intended to be used for defining the basic object model of your Cloud App, e.g.

the Logbook and TripLog object classes that we will define further down the road.

Example

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

}

 Developing Fabasoft Folio Cloud Apps 55

In addition to the model.ducx-om file, your Cloud App also contains a file named app.ducx-om, which

contains the definition of the app object representing your Cloud App. In the chapter “The finishing
touches” on page 116, we will discuss the purpose of the app object and what else should be defined in

the app.ducx-om file. But for now, let‟s focus on the model.ducx-om file.

Example

app.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 import COOATTREDIT@1.1;

 instance App AppFSCLOGBOOK {

 symbol = SymbolAppFSCLOGBOOK;

 appdescription<language, langcontent> = {

 { LANG_ENGLISH, file("resources/LANG_ENGLISH/appdescription.txt") },

 { LANG_GERMAN, file("resources/LANG_GERMAN/appdescription.txt") }

 }

 }

}

Note: To create a new object model file for organizing your object model elements, select “File” > “New” >
“Fabasoft app.ducx Object Model File”.

6.2.1 Adding the „Trip‟ structure

First, we‟re going to define a data structure for recording all the required trip information according to Table
1 on page 42, i.e. the place, date and time of departure and arrival and so on.

Example

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 struct Trip {

 datetime trpdepartureat;

 string trpdepartureplace;

 unsigned float(6,2) trpstartmileage;

 datetime trparrivalat;

 string trpdestinationplace;

 unsigned float(6,2) trpendmileage;

 unsigned float(6,2) trpmileage readonly(ui);

 timespan trpduration readonly(ui);

 TermComponentObject trptype;

 string trppurpose;

 User trpdriver;

 string trpdrivername;

 string trpvehicleid;

 boolean trpcanceled;

 }

}

In Fabasoft app.ducx, the struct keyword is used to define a compound type composed of members that

can have different types.

To represent a single trip from A to B along with all the other required metadata, we defined a data

structure called Trip, which is composed of 14 properties of various data types.

 56 Developing Fabasoft Folio Cloud Apps

The basic data types like string, float, boolean and datetime largely behave just like in every other

programming language with the exception that a float can hold up to 16 digits and a boolean may also

be null.

A timespan is an integer number storing the number of seconds between two dates. In the example, the

readonly(ui) property modifier suffix is applied to the trpduration property to turn it into a read-only

field in the user interface.

An object pointer property is a property pointing to an instance of the object class provided in place of the
data type. No explicit keyword is required for defining an object pointer property. Instead, the object class
of the objects that shall be referenced by the object pointer property is used as data type.

For instance, in the trpdriver property you can select an instance of object class User. When you do

so, a reference pointing to the selected user object is stored in the trpdriver property. Keep in mind that

the trpdriver property does not store the actual user object itself, but just a pointer pointing to it. If you

delete the user object, the pointer becomes invalid and will return null when you access it.

You probably noticed that in the example, the Trip structure contains two properties for storing driver

information, trpdriver and trpdrivername. The purpose of this is that later on, we will allow the user

recording a new trip to pick a user object in the trpdriver property, but then we will store only the user‟s

name in the trpdrivername property. If the selected user‟s name is changed later on, the value stored in

the trpdrivername property will remain unaffected.

Refer to [Faba11a] for a complete listing of all the data types supported by Fabasoft app.ducx as well as
for a comprehensive discussion of property modifier suffixes and their effects.

Finally, there‟s one more very important thing not to forget: As a Cloud App developer you are required to
carefully document your source code in English language. To do so, you have to use the Javadoc syntax
for documenting all of your object classes, data types, properties, use cases and so on.

For the sake of brevity, we omit these comments in most of the examples in the book. But you have to
document each and every element in your source code in order to reach the documentation ratio target of
100 %, so your Cloud App can successfully pass the release process.

The following example demonstrates how to document your source code using Javadoc style comments.

Example

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 /**

 * Structure for recording trip information in a trip log

 */

 struct Trip {

 /**

 * Date and time of departure

 */

 datetime trpdepartureat;

 /**

 * Descriptive name of the place of departure, e.g. address or landmark

 */

 string trpdepartureplace;

 /**

 * Odometer reading of the vehicle at the beginning of the trip

 */

 unsigned float(6,2) trpstartmileage;

 …

 }

}

 Developing Fabasoft Folio Cloud Apps 57

Note: [Orac11b] provides a good reference on how to write comments in Javadoc style.

6.2.2 Using terms for the trip type

The trptype property of the Trip structure is defined as an object pointer property allowing the user to

select instances of object class FSCTERM@1.1001:TermComponentObject, commonly referred to as

“Terms”.

Terms can be used to implement category or type selections so a user can choose from one or multiple
terms representing a category, type or state, and make a selection.

The benefit over enumerations is that with terms you can allow users to extend the available choices with
custom terms (by allowing Cloud users to create custom terms), whereas enumerations cannot be
extended by users.

In the chapter “Restricting the selectable trip types” on page 90, we will limit the selectable objects to one
of three predefined terms shipped with your Cloud App so users can only choose between “Private”,
“Business” and “Commute” to describe the type of a particular trip. However, for now, no filter restrictions

apply and all the existing terms accessible by users may be selected in the trptype property.

6.2.3 Adding software component references

Whenever you either explicitly or implicitly reuse parts of the functionality provided by another software
component (e.g. using an object class provided by another software component in one of your object
pointer properties), you have to add a reference to this software component.

Therefore, we have to add a reference to software component FSCTERM@1.1001, which provides the

TermComponentObject object class that we used to define the selectable objects for the trptype

property. To add a reference to software component FSCTERM@1.1001, select “Add Reference” from the

context menu of the “Software Component References” tree node of your project in Project Explorer. In the

“Select Components” dialog box depicted in Figure 27, select the software component FSCTERM@1.1001

and click “OK”. You may also select more than one software component at a time.

In order to be able to use the short reference TermComponentObject when referring to the

FSCTERM@1.1001:TermComponentObject object class in your code, you must add an import

declaration for software component FSCTERM@1.1001 as shown in the example.

For further information on how to manage software component references and import declarations refer to
[Faba11a].

 58 Developing Fabasoft Folio Cloud Apps

Figure 27: Adding a software component reference

6.2.4 Defining the „TripLog‟ object class

After having defined the Trip structure, we can now move on and define our first object class.

The TripLog object class will be used for storing all the trips of a given month in a property of the Trip

structure. This property is assigned the reference trltrips.

In Fabasoft app.ducx, any property can either be a scalar (meaning that only a single value of the data
type assigned to the property can be stored) or a list. Since we want to store all the trips of a month in one

trip log object, the trltrips property must be defined as a list of Trip.

In addition to the trltrips property, the trip log also needs a state so that we can distinguish between

open trip logs, where the user can still record additional trips, and closed trip logs, where no more changes
are permitted.

To model the state of a trip log, we use an enumeration. First, we define the enumeration type

TripLogState with two enumeration items, TLS_OPEN for open and TLS_CLOSED for closed trip logs.

Then we define a property named trlstate of enumeration type TripLogState in the TripLog object

class.

New trip logs should automatically be initialized with the TLS_OPEN state. To accomplish that, add the

init keyword to the definition of the trlstate property and set it to TLS_OPEN.

 Developing Fabasoft Folio Cloud Apps 59

Furthermore, we add two date properties, trlfrom and trluntil, to the trip log for storing the

departure date of the first non-canceled trip and the arrival date of the last non-canceled trip recorded in
the trip log. These properties serve as informational properties only and will be populated automatically.

The properties trltrips, trlstate, trlfrom, and trluntil must not be directly changed by the user

in the GUI but only through appropriate use cases which we will define later on. Therefore, the

readonly(ui) property modifier suffix is attached to both properties to prevent users from changing them

in the GUI.

We also include another property of the Trip data structure in the trip log. The sole purpose of the

trlnewtrip property is to allow users to enter information for recording a new trip. In a further step, we

will implement a mechanism so that the information entered by a user is not saved in the trlnewtrip

property itself but instead recorded in the trltrips property.

Finally, trip logs should be displayed in the tree view when a logbook is expanded. For the instances of an

object class to show up in the tree view, set the compound keyword to true.

The following example illustrates the progress made so far. For the sake of brevity, we will omit parts of the
source code already shown in the previous example. Omissions are indicated by a line of dots.

Example

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 struct Trip {

 …

 }

 enum TripLogState {

 TLS_OPEN = 1,

 TLS_CLOSED = 2

 }

 class TripLog {

 compound = true;

 TripLogState trlstate readonly(ui) {

 init = TLS_OPEN;

 }

 date trlfrom readonly(ui);

 date trluntil readonly(ui);

 Trip[] trltrips readonly(ui);

 Trip trlnewtrip;

 }

}

6.2.5 Defining the „Logbook‟ object class

The Logbook object class is the container for all trip logs belonging to a logbook. Therefore, we derive the

Logbook object class from the CompoundObject object class as it serves as a folder for trip logs.

We need to set the common keyword to true to make the Logbook object class available for selection in

the “Create” dialog box so that users can instantiate a logbook either on the home screen, within a folder or
within a team room.

Note: The common keyword defines whether an object class is available in a “common place”. If you don‟t

explicitly set common to true for your object classes then they won‟t appear in the “Create” dialog box

when a user is creating a new object either on the home screen, within a folder or within a team room.

 60 Developing Fabasoft Folio Cloud Apps

For object classes that should only be available when creating a new object within a property of one of

your own object classes you don‟t need to set the common keyword to true. For instance, you can create

trip logs within a logbook even though we didn‟t define the common keyword to true for the TripLog

object class.

Logbooks should also appear in the tree view of folders and team rooms. To accomplish that, we need to

set the compound keyword of the Logbook object class to true.

Now let‟s define the properties we need for the Logbook object class:

The logvehicleid property is a simple string storing the unique ID of the vehicle that the logbook is

associated with. Most likely, you want to enter the plate numbers of your vehicle for this purpose. We
arbitrarily limit the maximum number of characters to 25 and also turn the property into a required field by

attaching the not null property modifier suffix. For required fields, users must enter values in the GUI in

order to be able to save their changes.

In the logdescription property, users can enter some descriptive text for their logbooks.

Note: While simple strings are limited to a maximum of 254 characters, string lists (defined using the

string[] keyword) can store any number of characters – within reason, that is. Don‟t try to store ten

terabytes of text in a string list just for the heck of it.

Now we need to define the logtriplogs property, which is required for storing the trip logs belonging to

a logbook. We use the unique property modifier prefix to indicate that the list of trip logs must not contain

duplicate entries.

Lastly, the child keyword must be set to true for the logtriplogs property to indicate the trip logs

stored in this property are subordinated to the logbook. The purpose of the child keyword is explained in

greater detail in the chapter “Things to consider when dealing with team rooms” on page 119.

Example

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 struct Trip {

 …

 }

 enum TripLogState {

 …

 }

 class TripLog {

 …

 }

 class Logbook : CompoundObject {

 compound = true;

 common = true;

 string(25) logvehicleid not null;

 string[] logdescription;

 unique TripLog[] logtriplogs {

 child = true;

 }

 }

}

6.2.6 Linking logbook and trip logs

Up next, we‟re going to establish a bi-directional connection between a logbook and its associated trip
logs.

 Developing Fabasoft Folio Cloud Apps 61

Why do we need this?

The logtriplogs property of a logbook is a pointer to the trip logs belonging to that logbook, and

therefore establishes a link from the logbook to its associated trip logs.

However, in order to find our way back from a trip log to the logbook it belongs to, we need some additional
functionality. Otherwise, we wouldn‟t be able to determine the vehicle ID from the logbook when recording
a new trip in a trip log.

First, we need to add an object pointer property to the trip log for pointing to the logbook. In the second

step, we will automatically populate the new property trllogbook when a trip log is created. The user

should not be able to change the property in the GUI, so we add the readonly(ui) property modifier

suffix to the property definition.

Example

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 struct Trip {

 …

 }

 enum TripLogState {

 …

 }

 class TripLog {

 Logbook trllogbook readonly(ui);

 …

 }

 class Logbook : CompoundObject {

 …

 }

}

Secondly, using the link keyword we link both properties, trllogbook of the trip log and logtriplogs

of the logbook, with each other.

The links ensure that the integrity of the relationship between linked objects is maintained automatically.

Whenever a new trip log is added to or removed from the logtriplogs property of the logbook, this

change is then reflected in the trllogbook property of the concerned trip log. Put bluntly, when you add

a trip log to the logbook, a pointer to the logbook is stored in the trip log.

Example

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 struct Trip {

 …

 }

 enum TripLogState {

 …

 }

 class TripLog {

 Logbook trllogbook readonly(ui) {

 link = logtriplogs;

 }

 …

 }

 62 Developing Fabasoft Folio Cloud Apps

 class Logbook : CompoundObject {

 unique TripLog[] logtriplogs {

 link = trllogbook;

 child = true;

 }

 …

 }

}

6.2.7 Defining the language strings of your object model elements

Now that we have defined the key object model elements making up your Cloud App, it‟s time to assign
some meaningful names to all the object classes and properties.

To define the strings displayed in the GUI, open the resources folder of your Cloud App project. The

resources folder contains a subfolder for each language you decided to support. Remember when you

had to select the check boxes for your Cloud App‟s supported languages in your development project in
Fabasoft Folio Cloud?

The reference of the respective languages is used as name of the language folders. For instance, the

reference of the language object representing the English language is COOSYSTEM@1.1:LANG_ENGLISH.

That‟s why the folder for English in your Cloud App project is named LANG_ENGLISH. Don‟t try to rename

it since the folder name maps to the reference of the language object.

Within the LANG_ENGLISH folder, you will find all the multilingual resources for the English language and

the same applies for every other supported language.

Figure 28: Editing the multilingual names of your object model elements

 Developing Fabasoft Folio Cloud Apps 63

All multilingual strings for your object model elements, forms and form pages etc. are stored in the

mlnames.lang file located underneath the language folder. The name mlnames.lang is hardcoded, so

don‟t rename this file either.

To define all the English strings for your Cloud App, double-click the mlnames.lang file and enter the

desired strings for all the entries in the table. Do the same for all other supported languages.

Afterwards, it‟s always a good idea to clean and recompile your Cloud App project. To do so, select
“Clean” from the “Project” menu of Eclipse, select your Cloud App project and click “OK” (see Figure 29).
This will recompile the project from scratch to make sure that all changes you‟ve made to the multilingual
strings are reflected in the compiler output.

Figure 29: Cleaning the Cloud App project to recompile it from scratch

Instead of defining the multilingual names of your object classes and properties in the mlnames.lang file

in the respective language folder, you can also use the properties view of Eclipse to enter the language
strings for the element selected in the source code (see Figure 30).

Figure 30: Defining a language string in the properties view

 64 Developing Fabasoft Folio Cloud Apps

6.3 Defining the symbols

An integral part of a visually compelling Cloud App are the symbols used for instances of your object
classes, form pages, menu items and so on.

Using the app.ducx resource language, you can define symbols and resources such as strings and error
messages to avoid hard-coded, culture- and language-specific values in your Cloud App.

A resource model block consists of import declarations and resource model elements. The resources

keyword denotes a resource model block. It must be followed by the reference of your Cloud App and curly
braces.

Resource model blocks can only be contained in files with a .ducx-rs extension.

Your Cloud App project already contains a symbols.ducx-rs file where you can define all the symbols

for your Cloud App.

For each symbol, you need to provide six images in the following formats: a GIF image in 16×16 pixels,
and PNG images in 16×16, 20×20, 24×24, 256×256 and 512×512 pixels.

The suggested location for image files is the resources/symbols folder in your Cloud App project.

However, you may freely organize your images in subfolders.

There is already a predefined symbol for your Cloud App in the symbols.ducx-rs file with the respective

images for the symbol residing in the resources/symbols folder. You can use the definition of the

SymbolAppFSCLOGBOOK symbol as a template for the symbols we need to define for object class

Logbook and TripLog: SymbolLogbook and SymbolTripLog.

Example

symbols.ducx-rs
resources FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 symbol SymbolAppFSCLOGBOOK {

 symbolimages<symbolimageformat, content> = {

 { SF_GIF16, file("resources/symbols/AppFSCLOGBOOK-GIF16.gif") },

 { SF_PNG16, file("resources/symbols/AppFSCLOGBOOK-PNG16.png") },

 { SF_PNG20, file("resources/symbols/AppFSCLOGBOOK-PNG20.png") },

 { SF_PNG24, file("resources/symbols/AppFSCLOGBOOK-PNG24.png") },

 { SF_PNG256, file("resources/symbols/AppFSCLOGBOOK-PNG256.png") },

 { SF_PNG512, file("resources/symbols/AppFSCLOGBOOK-PNG512.png") }

 }

 }

 symbol SymbolLogbook {

 symbolimages<symbolimageformat, content> = {

 { SF_GIF16, file("resources/symbols/Logbook-GIF16.gif") },

 { SF_PNG16, file("resources/symbols/Logbook-PNG16.png") },

 { SF_PNG20, file("resources/symbols/Logbook-PNG20.png") },

 { SF_PNG24, file("resources/symbols/Logbook-PNG24.png") },

 { SF_PNG256, file("resources/symbols/Logbook-PNG256.png") },

 { SF_PNG512, file("resources/symbols/Logbook-PNG512.png") }

 }

 }

 symbol SymbolTripLog {

 symbolimages<symbolimageformat, content> = {

 { SF_GIF16, file("resources/symbols/TripLog-GIF16.gif") },

 …

 { SF_PNG512, file("resources/symbols/TripLog-PNG512.png") }

 }

 }

}

 Developing Fabasoft Folio Cloud Apps 65

We suggest using an external image editing program for creating the image files for your symbols. Once

you‟ve created the images, import them into your Cloud App project by selecting the symbols folder

underneath the resources folder, as depicted in Figure 31. Then select “Import” from the context menu of

the symbols folder.

Figure 31: The “symbols” folder contains the image files for the symbols of your Cloud App

Figure 32: Selecting the “File System” import source

 66 Developing Fabasoft Folio Cloud Apps

In the dialog box shown in Figure 32, select the “File System” import source from the “General” branch and
click “Next”.

In the dialog box depicted in Figure 33, enter the folder name where you saved your images in the From
directory field and select the image files you want to import. Then click “Finish” to finalize the import of the
image files.

Figure 33: Importing image files from the file system

That‟s it!

Now that we have defined our custom symbols for logbooks and trip logs, we‟ll have to assign them to the
respective object classes in one of the next steps. This will be covered in the chapter “Assigning a symbol
to the „Logbook” on page 70.

Note: After defining and uploading new symbols into your Cloud App VDE, you need to restart the web
services of your Cloud Sandbox for the new symbols to become visible. The reason for this is that the new
image files new to be deployed to the image cache of the web service, which is only refreshed after a
restart.

For further information on how to restart the web services of your Cloud Sandbox refer to the chapter
“Working with the Cloud App VDE” on page 35.

 Developing Fabasoft Folio Cloud Apps 67

6.4 Designing the forms

With the basic object model along with the required symbols for your object classes in place, we can now
tackle the next step: For each object class of your Cloud App, we have to design a set of forms and form
pages for displaying the properties.

All the user interface elements for your Cloud App, such as forms, form pages and menu items, are
defined using the app.ducx user interface model language.

A user interface model block consists of import declarations and user interface model elements. The

userinterface keyword denotes a user interface model block. It must be followed by the reference of

your Cloud App and curly braces.

User interface model blocks can only be contained in files with a .ducx-ui extension.

Just as is the case with all other types of model files, you can have as many .ducx-ui files in your Cloud

App project as you wish. Usually, it‟s a good approach to create one for each object class.

6.4.1 Defining a form set for the „Logbook‟ object class

It‟s time to create our first app.ducx user interface file!

From the “File” menu, select “New” and then “Fabasoft app.ducx User Interface File”. In the dialog box

depicted in Figure 34, enter logbook.ducx-ui in the File name field and click “Finish”.

Figure 34: Creating a new app.ducx user interface file

Next, we‟re going to define a few forms in the logbook.ducx-ui file.

Forms serve as “containers” for form pages, which in turn contain the properties displayed in the GUI. In
order to be displayed, forms must be bound to specific use cases, which serve as a kind of trigger. When a
use case involving a user interface is invoked on an instance of one of your object classes, Fabasoft Folio
Cloud tries to locate a matching form for this use case in the form bindings you provided for your object
class and displays the matching form. If no match is found, the default form from the base class of your
object class is displayed instead.

The most common use cases involving a user interface are listed in Table 2. When creating a new object
class, you must also provide form bindings for at least the first four use cases listed in the table.

 68 Developing Fabasoft Folio Cloud Apps

Use case Description

COOSYSTEM@1.1:ObjectConstructor This use case is invoked when a new instance of an
object class is created.

COOATTREDIT@1.1:ReadObjectAttributes This use case is invoked when the properties of an
object are read.

COOATTREDIT@1.1:EditObjectAttributes This use case is invoked when the properties of an
object are edited.

COOSEARCH@1.1:SearchObjects This use case is invoked when the search dialog box
is opened.

COODESK@1.1:DisplayOptions The form assigned to this use case is used for
allowing users to select columns when changing the
column settings of an object list.

COODESK@1.1:ExploreObject This use case is invoked when an object is opened in
the explore view by selecting the Explore menu or by
selecting a compound object in the tree.

COODESK@1.1:ExploreTree The form assigned to this use case defines the object
lists shown in the tree view when a compound object
is expanded.

Table 2: Use cases for form bindings

So basically, for our Logbook object class we have to provide form bindings for the triggers

ObjectConstructor, ReadObjectAttributes, EditObjectAttributes and SearchObjects.

However, as we can map the same form for multiple triggers, we will end up defining just two different
forms: a constructor form and another form that is used for the remaining three bindings.

A form is defined using the form keyword. The form pages that make up the form can either be defined

inside of the form block or outside, underneath the user interface model block. To define a form page, the

formpage keyword is used. Within a form page, a dataset block expresses which properties will be

displayed on the form page.

By convention, the references of forms should begin with the Form prefix. Constructor forms should be

prefixed with ConstructorForm, and search forms with SearchForm. Likewise, the references of form

pages should begin with the Page prefix.

Our first form, FormLogbook, is a simple form comprised of two form pages, PageLogbook and

PageLogbookTripLogs. It should be used for reading and editing the properties of a logbook as well as

for defining search restrictions when searching for logbooks.

In the dataset block of PageLogbook, we explicitly list the properties to be displayed on the form page.

In addition to the logvehicleid and logdescription properties, we also include the objname

property, which stores the name of the logbook.

The purpose of the second form page, PageLogbookTripLogs, is to display the trip logs associated with

the logbook. We also use the symbol keyword to assign a symbol to the form page. By default, the symbol

of the object class is used for the first form page of a form, but using the symbol keyword you can assign

custom symbols to the remaining form pages.

 Developing Fabasoft Folio Cloud Apps 69

Example

logbook.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 form FormLogbook {

 formpage PageLogbook {

 dataset {

 objname;

 logvehicleid;

 logdescription;

 }

 }

 formpage PageLogbookTripLogs {

 symbol = SymbolTripLog;

 dataset {

 logtriplogs;

 }

 }

 }

}

The second form we need to define is the constructor form for logbooks.

Generally, you want the user to provide values for the most important properties of your object class right
when they are creating a new instance of it. However, the constructor form should present only the
properties that make sense when creating new objects, while leaving out the ones that don‟t provide any
benefit yet.

Since our requirements state that when creating a logbook, a trip log must automatically be created within
the logbook, it doesn‟t make sense to display the list of trip logs in the constructor form.

The ConstructorFormLogbook form is merely reusing the existing PageLogbook form page.

Example

logbook.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 form FormLogbook {

 …

 }

 form ConstructorFormLogbook {

 PageLogbook;

 }

}

Next, we have to take care of the form binding to ensure that the forms we defined are actually invoked
when a new logbook is created or opened for editing. To accomplish this, we need to extend object class

Logbook with a form binding by adding an extend class block to our code.

We do not provide a form binding for COODESK@1.1:ExploreObject yet, even though the Logbook

object class is compound. In this case, the default fallback is that all object lists of the object class are
displayed on the right-hand pane when a logbook is selected in the tree view.

 70 Developing Fabasoft Folio Cloud Apps

Note: In the chapter “Defining the columns for the „logtriplogs‟ property” on page 75, we will demonstrate

how to define a desk form with a form page containing custom column settings for the logtriplogs

property.

Example

logbook.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 form FormLogbook {

 …

 }

 form ConstructorFormLogbook {

 …

 }

 extend class Logbook {

 forms {

 ObjectConstructor { ConstructorFormLogbook }

 ReadObjectAttributes { FormLogbook }

 EditObjectAttributes { FormLogbook }

 SearchObjects { FormLogbook }

 }

 }

}

6.4.2 Assigning a symbol to the „Logbook‟ object class

In the chapter “Defining the symbols” on page 64 we discussed how to define custom symbols for your
object classes. However, these symbols won‟t be displayed unless we assign them to your object classes.

Within the extend class block for object class Logbook, use the symbol keyword to assign

SymbolLogbook to the object class.

Example

logbook.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 …

 extend class Logbook {

 symbol = SymbolLogbook;

 …

 }

}

6.4.3 Defining a form set and symbol for the „TripLog‟ object class

Basically, to define a form set for trip logs we just need to repeat the same steps discussed before.

Create a new Fabasoft app.ducx user interface file named triplog.ducx-ui and define a form with the

reference FormTripLog consisting of just a single form page, PageTripLog.

 Developing Fabasoft Folio Cloud Apps 71

In the dataset block of PageTripLog, specify the TripLog object class. This shortcut allows you to

include all properties assigned to the TripLog object class instead of having to list them one by one. In

the chapter “Layouting form pages using the form designer” on page 71, we will explain how to use the
form designer of Fabasoft app.ducx to select the properties that are actually displayed when we define the
layout for the form page.

Later on, we will define an automatic name build for trip logs, so there‟s no need to include the objname

property on the PageTripLog form page.

Using the extend class keyword, we assign the SymbolTripLog symbol to the TripLog object class

as well as the form binding.

Note that we don‟t provide a form binding for COOSYSTEM@1.1:ObjectConstructor, since users will

not have to create trip logs manually but instead will use a wizard to do so – as we will see later on.

Also, we do provide a form binding for COODESK@1.1:ExploreObject, which will display FormTripLog

on the right-hand pane when a trip log is selected in the tree view.

Example

triplog.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 form FormTripLog {

 formpage PageTripLog {

 dataset {

 TripLog;

 }

 }

 }

 extend class TripLog {

 symbol = SymbolTripLog;

 forms {

 ReadObjectAttributes { FormTripLog }

 EditObjectAttributes { FormTripLog }

 SearchObjects { FormTripLog }

 ExploreObject { FormTripLog }

 }

 }

}

6.4.4 Layouting form pages using the form designer

The form designer of Fabasoft app.ducx (depicted in Figure 35) allows you to define a layout for your form
pages using a GUI. To activate the form designer, switch from the Code pane to the Form Pages pane.

The Palette contains all properties that are defined in the dataset block of the selected form page.

The form designer provides following features:

 The properties can be adjusted within the form page by drag-and-drop.

 Labels and fields can be spanned horizontally or vertically over multiple columns or lines.

 Pressing and holding the Alt key allows you to select the label and to adjust it within the field. A label

can be positioned left, right, at the top or at the bottom of a field.

 A horizontal rule can be inserted by selecting it from the “Static Controls” block.

 To filter the available properties use the Filter field. Clicking “x” deletes the filter.

 72 Developing Fabasoft Folio Cloud Apps

 Using the context menu, you can assign a control to a property (see [Faba11e]).

If you define a layout for a form page using the form designer, a layout block is automatically generated

in the source code of the concerned Fabasoft app.ducx user interface file.

Note: Once defined, the layout block overrides the dataset block. If you don‟t add a property listed in

the dataset block to the graphical layout, it will not be displayed in the GUI. However, in order to become

available in the palette, a property has to be included in the dataset block. Alternatively, if you list the

reference of an object class in the dataset block, all the properties directly assigned to the object class

become available in the palette. This does not include the properties of base classes though, which must

be explicitly listed in the dataset block.

6.4.4.1 Defining the layout of the “PageTripLog” form page

To define a layout for the PageTripLog form page, activate the form designer by switching to the Form

Pages pane and show the palette by clicking the arrow-shaped “Show Palette” button in the upper right
corner.

Figure 35: Using the form designer of Fabasoft app.ducx

In the Active Page list on the left, select the PageTripLog form page. Then click on the

FSCLOGBOOK@111.100:TripLog category in the palette to expand it.

In the list of available properties, click the trllogbook property to select it. Move the mouse pointer over

the box on the white canvas and click on it to position the trllogbook property on the form page.

Repeat the previous step for all properties except trlnewtrip, which will not be included on the

PageTripLog form page.

To position two properties side-by-side, select the first property, move the mouse pointer over the central
anchor point of the left edge of the property and drag it to the right to resize it. Repeat this step for the
second property, and then drag the second property next to the first one.

 Developing Fabasoft Folio Cloud Apps 73

In order to remove a property from the canvas, select it and press the “Delete” key on your keyboard.

6.4.4.2 Modifying the columns of the “Trip” structure

For object lists and structures, you can define the columns or properties displayed for the respective
element by defining a so-called “detail layout”.

If you just place a structure (e.g. the trltrips property) on a form page without making any

modifications, all of the properties that are part of the structure will be displayed on the form page.

However, if you want only a subset of the properties of a structure to be displayed on the form page then
you can define a detail layout for the structure.

So let‟s go ahead on define a detail layout for the trltrips property:

1. If you haven‟t done so already, place the trltrips property on the form designer canvas

2. Select the trltrips property on the canvas

3. In the palette, expand the FSCLOGBOOK@1.1001:Trip category

4. Select the trpdepartureat property of the Trip structure in the palette, point your mouse over the

trltrips property on the form designer canvas, and drop the trpdepartureat property

5. Repeat the previous step for all properties of the Trip structure except trpdriver

Why did we skip the trpdriver property? Because this property will only be used for entering trip data.

For displaying recorded trips, it‟s of no use as it does not contain a value. When it comes to building the
wizard for recording trips, we will explain that in greater detail.

When you‟re done with the form page, the final version of the source code for FormTripLog should look

like the following example.

Example

triplog.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 form FormTripLog {

 formpage PageTripLog {

 dataset {

 TripLog;

 }

 layout {

 // Auto-generated layout block

 row {

 FSCLOGBOOK@111.100:trllogbook {

 colspan = 4;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trlstate {

 colspan = 4;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trlfrom {

 colspan = 2;

 74 Developing Fabasoft Folio Cloud Apps

 labelposition = left;

 }

 FSCLOGBOOK@111.100:trluntil {

 colspan = 2;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trltrips {

 detail = layout {

 row {

 FSCLOGBOOK@111.100:trpdepartureat {

 colspan = 2;

 labelposition = left;

 }

 FSCLOGBOOK@111.100:trparrivalat {

 colspan = 2;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trpstartmileage {

 colspan = 2;

 labelposition = left;

 }

 FSCLOGBOOK@111.100:trpendmileage {

 colspan = 2;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trpduration {

 colspan = 2;

 labelposition = left;

 }

 FSCLOGBOOK@111.100:trpmileage {

 colspan = 2;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trpdepartureplace {

 colspan = 2;

 labelposition = left;

 }

 FSCLOGBOOK@111.100:trpdestinationplace {

 colspan = 2;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trptype {

 colspan = 2;

 labelposition = left;

 }

 FSCLOGBOOK@111.100:trppurpose {

 colspan = 2;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trpdrivername {

 colspan = 2;

 labelposition = left;

 Developing Fabasoft Folio Cloud Apps 75

 }

 FSCLOGBOOK@111.100:trpvehicleid {

 colspan = 2;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trpcanceled {

 colspan = 4;

 labelposition = left;

 }

 }

 }

 rowspan = 2;

 colspan = 4;

 labelposition = top;

 }

 }

 row {

 }

 }

 }

 }

 extend class TripLog {

 …

 }

}

6.4.5 Defining the columns for the „logtriplogs‟ property

We can also use the form designer to define the default column settings that are shown when an object list
is displayed.

For example, when the list of trip logs belonging to a logbook is displayed, it would be nice to display some
additional columns besides the name of the respective trip logs.

To accomplish that, we need to add a layout block to the PageLogbookTripLogs form page. Open the

PageLogbookTripLogs form page in the form designer, select the logtriplogs property, press the

“Delete” key to remove it from the form page and then add it to the form page again by selecting it in the
palette and placing it on the canvas. This step is necessary to allow for the column settings to become
editable.

Select the logtriplogs property and then select the objname property on the palette and place it inside

of the logtriplogs property on the canvas. Repeat this step for the trlstate and the trltrips

property.

After saving your changes, the form designer generates a layout block for the PageLogbookTripLogs

form page that will show the objname property, the trlstate property and the trltrips property as

separate columns when the logtriplogs list is displayed in the property editor.

Since we also want to use the same column settings for the logtriplogs list when a logbook is

displayed on the desk, we need to define a desk form named DeskFormTripLog containing the

PageLogbookTripLogs form page and provide a form binding for COODESK@1.1:ExploreObject,

which will display DeskFormTripLog on the right-hand pane when a logbook is opened on the desk or

selected in the tree view.

 76 Developing Fabasoft Folio Cloud Apps

Example

logbook.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 …

 form FormLogbook {

 formpage PageLogbook {

 …

 }

 formpage PageLogbookTripLogs {

 symbol = SymbolTripLog;

 dataset {

 logtriplogs;

 }

 layout {

 // Auto-generated layout block

 row {

 FSCLOGBOOK@111.100:logtriplogs {

 detail = layout {

 row {

 COOSYSTEM@1.1:objname {

 colspan = 4;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trlstate {

 colspan = 4;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trltrips {

 rowspan = 2;

 colspan = 4;

 labelposition = top;

 }

 }

 row {

 }

 }

 rowspan = 2;

 colspan = 4;

 labelposition = top;

 }

 }

 row {

 }

 }

 }

 }

 …

 form DeskFormLogbook {

 // Reuse the existing "PageLogbookTripLogs" form page

 PageLogbookTripLogs;

 }

 Developing Fabasoft Folio Cloud Apps 77

 extend class Logbook {

 forms {

 ObjectConstructor { ConstructorFormLogbook }

 ReadObjectAttributes { FormLogbook }

 EditObjectAttributes { FormLogbook }

 SearchObjects { FormLogbook }

 ExploreObject { DeskFormLogbook }

 }

 }

}

6.4.6 Beefing up a form page

layout blocks generated by the form designer are pretty powerful. And as usual, most of the power

remains hidden under the hood.

In the layout block of a form page, you can override various settings for properties or define constraints

specific to the particular form page.

For instance, you can add validation constraints and user interface change constraints, which we will cover
later on in the chapter “Adding a wizard for recording a trip” on page 82.

But for now, we will keep it simple. All we want to accomplish is that the objname property becomes a

required field where users must enter a value. Moreover, we will assign an HTML editor control to the

logdescription property so users can apply some formatting when entering description text.

To turn a property into a required field on form page level, add a mustbedef expression to the property in

the layout block. The expression must yield a Boolean return value.

In order to attach the HTML editor control included in Fabasoft Folio Cloud to the logdescription

property, add a reference to software component FSCDOX@1.1001 to your Cloud App project (see “Adding

software component references” on page 57). Then, write the fully qualified reference of the HTML editor

control, FSCDOX@1.1001:CTRLHtmlEditor, along with appropriate control parameters in parentheses

before the reference of the logdescription property.

Refer to [Faba11e] for a detailed description of the controls provided out-of-the-box by Fabasoft Folio
Cloud and their respective control parameters.

The following example shows the revamped PageLogbook form page.

Example

logbook.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 form FormLogbook {

 formpage PageLogbook {

 dataset {

 objname;

 logvehicleid;

 logdescription;

 }

 layout {

 // Auto-generated layout block

 row {

 COOSYSTEM@1.1:objname {

 colspan = 4;

 labelposition = left;

 78 Developing Fabasoft Folio Cloud Apps

 mustbedef = expression {

 return true;

 }

 }

 }

 row {

 FSCLOGBOOK@111.100:logvehicleid {

 colspan = 4;

 labelposition = left;

 }

 }

 row {

 FSCDOX@1.1001:CTRLHtmlEditor(

 "XHTMLDocumentType=FSCDOX@1.1001:XHTMLSelfContained

 NoTableToolbar=true NoNearbar=true DisabledButtons=insertimage;importimage;

 insertresource;createlinkinternal;createexpr;unexpr;togglesource")

 FSCLOGBOOK@111.100:logdescription {

 rowspan = 2;

 colspan = 4;

 labelposition = top;

 }

 }

 row {

 }

 }

 }

 …

 }

 …

}

6.5 Committing your changes to the Subversion repository

Safety first! The golden rule when it comes to committing your work to the Subversion repository of
Fabasoft Folio Cloud is simple: Do it regularly and often!

The checked in Fabasoft app.ducx project for your Cloud App is what counts at the end of the day. To be
more precise, the Fabasoft app.ducx project in the Subversion repository is what will be submitted to
Fabasoft once you send your Cloud App into the release process.

Don‟t just commit all of your work once you‟re completely done with your entire Cloud App. Commit your
changes whenever you finish a block of work (e.g. an object class and its properties or a form set). Once
committed, you can always roll back to the committed version in case of problems (e.g. data loss due to a
crashed hard drive).

To commit your changes to the Subversion repository, select your Cloud App project in Project Explorer,
open the context menu and select “Team” > “Commit”. In the dialog box depicted in Figure 36, enter a
comment describing the changes that you‟ve made in the Comment field and click “OK”.

 Developing Fabasoft Folio Cloud Apps 79

Figure 36: Committing your changes to the Subversion repository

If you are prompted for your credentials, enter your Fabasoft Folio Cloud credentials to proceed.

6.6 Uploading your Cloud App into the Cloud Sandbox

Hey, we‟ve made pretty good progress!

Let‟s have a look at your Cloud App in your Cloud Sandbox environment so we can actually see what
we‟ve accomplished so far!

But before we can see anything, we have to deploy your Cloud App into the Cloud Sandbox.

Whatever you do within Eclipse does not affect the Cloud Sandbox until you actually upload your changes.

6.6.1 Deploying your Cloud App

To upload your Cloud App, you have to create a launch configuration for your Fabasoft app.ducx project in
Eclipse. Click “Run Configurations” on the “Run” menu to bring up the dialog box shown in Figure 37.

 80 Developing Fabasoft Folio Cloud Apps

Figure 37: Creating a new launch configuration in Eclipse

In this dialog box, select the “Fabasfot app.ducx section, click the “New launch configuration” symbol and
enter a Name for the new launch configuration. In addition to this, select the Project by clicking “Choose”.
Click “Apply” to save your settings, and “Run” to deploy and run your Cloud App project.

Once a Fabasoft app.ducx launch configuration has been created, you can select the existing launch
configuration on the “Run as” menu to run your Cloud App project.

6.6.2 Assigning your Cloud App to a test user

After successfully compiling your project and uploading it into your Cloud Sandbox, your browser is opened
and you are taken to your Cloud Sandbox where you are requested to log in.

Log in using the “developer” account along with the password you assigned to the Cloud App VDE users
(see chapter “Working with the Cloud App VDE” on page 35).

Figure 38: Searching your Cloud App

 Developing Fabasoft Folio Cloud Apps 81

On your home screen, create an “Administration Tool” and open it. In the administration tool, issue a
search for objects of object class “App”. In the search results, select your Cloud App and click “Next” to
add it to the administration tool (see Figure 38).

From the context menu of your Cloud App, select “Edit App Users” to bring up the dialog box depicted in
Figure 39. In the Activated for the following user property, select “Wanda Carney0001” and click “Next”.

Figure 39: Assigning your Cloud App to a test user

For initial testing, we will use the user account of Wanda Carney. However, using this wizard you can
assign a “license” for your Cloud App to any of the test users listed in [Faba11c].

After activating your Cloud App for Wanda Carney, close your current browser session and reconnect to

your Cloud Sandbox with the carney0001 user account.

6.6.3 Your first glimpse of your Cloud App

After logging in to your Cloud Sandbox with the carney0001 user account, you can go ahead and create

your first logbook.

First, create a new folder on the desk of Wanda Carney by clicking the “Create Folder” button. Assign a
name to the folder and open it with a double click. Inside the folder, click the “New” button to create a new
object, select “Logbook” in the list of available object classes and click “Next”.

In the “Create Logbook” dialog box (see Figure 40), enter a name for your new logbook and enter the plate
numbers of your car in the Vehicle ID property. Then enter a brief description for the logbook in the
Description property and click “Next”.

Figure 40: Creating a logbook

 82 Developing Fabasoft Folio Cloud Apps

If you want, you can also go ahead and open the logbook with a double click and click “New” to create a
new trip log in the list of trip logs belonging to the logbook. Then open the properties of the trip log by
selecting “Properties” from its context menu.

Well, that‟s pretty much what we‟ve achieved so far. It‟s not the next “Cloud App of the Year” yet, but step
by step we‟ll get a little closer: In the next chapter we‟ll add some cool functionality for recording and
canceling trips!

6.7 Implementing the use cases

How about some real coding after all of this forms stuff? Let‟s talk about implementing methods! Or rather,
what I should say: let‟s talk about use cases!

A use case can be implemented on an object class either as a method (using Fabasoft app.ducx
expression language) or as a virtual application.

If at any point your use case needs to present a user interface – such as a form or a dialog box – you are
required to implement it as a virtual application. This is also the case when you invoke another use case
requiring user interaction from your use case.

When no user interaction is required at all, you can (and generally should) implement your use case using
Fabasoft app.ducx expression language.

Use cases and virtual applications are defined using the Fabasoft app.ducx use case language in files with

a .ducx-uc extension.

A use case model block consists of import declarations, transaction variable declarations, and use case

model elements. The usecases keyword denotes a use case model block. It must be followed by the

reference of your Cloud App and curly braces.

6.7.1 Adding a wizard for recording a trip

Now we will implement the centerpiece of the entire Cloud App: the wizard for recording new trips in a trip
log.

Using the context menu or a tip, users should be able to invoke the wizard on a trip log, which will then
allow them to enter all the required data for a trip. After some validation, this data should be recorded in the

trltips property of the trip log.

To allow users to enter their trip data, we will display the trlnewtrip property in a dialog box of the

wizard. When a user clicks “Record Trip”, the data entered in the trlnewtrip property will be retrieved to

populate the trltips property, but the contents of the trlnewtrip property will not be stored. Instead,

the trlnewtrip property will be reinitialized with default values and users can immediately record the

next trip without having to reinvoke the wizard.

Figure 41 shows the wizard that we‟re going to implement now.

 Developing Fabasoft Folio Cloud Apps 83

Figure 41: Wizard for recording a new trip

6.7.1.1 Defining a menu use case

To get started, we need to create a new Fabasoft app.ducx use case file named usecases.ducx-uc. In

the use case file, we define a menu use case with the reference RecordTripWizard. In contrast to a

simple use case, a menu use case is intended to be invoked using a menu item from the menu, context
menu or tips pane.

Note: For menu use cases, the Fabasoft app.ducx compiler implicitly generates a menu item with the

same reference as the menu use case and the prefix Menu. In our example, a menu item with the

reference MenuRecordTripWizard is generated automatically, so we don‟t need to define it manually.

With the symbol keyword, we assign a custom symbol to the RecordTripWizard use case. This way,

the SymbolRecordTrip symbol is displayed in the menu item and in the tip entry for invoking the wizard.

Basically it‟s just fuzz, but it makes your Cloud App look much nicer.

Using the variant keyword, we tell the Fabasoft app.ducx compiler that we want to implement the

RecordTripWizard use case in object class TripLog.

The impl = application statement instructs the Fabasoft app.ducx compiler to create a new virtual

application, which will be called whenever the use case is invoked. The expression block within the

virtual application is its “main function”, which is where the virtual application starts execution.

In the expression block of the virtual application, we have to check if the trip log is still in “open” state. If

it‟s not, we throw an error, which needs to be defined in a separate Fabasoft app.ducx resource file. In our

example, this file is named errors.ducx-uc, but you can pick any name you like for your files.

The errormsg keyword (allowed within a resources block of a ducx-rs file) is used to define a custom

error. Errors in Fabasoft Folio Cloud are similar to exceptions in Java. The actual (language-specific) error

message is specified in the mlnames.lang files for each language.

Use the COOSYSTEM@1.1:Print action to replace placeholders in an error message with the actual

values.

The following example shows what we have accomplished so far. In the next section, we will learn how to
define a dialog to interact with users.

For further information on how to define and implement menu use cases and how to raise and format
errors, refer to [Faba11a].

 84 Developing Fabasoft Folio Cloud Apps

Example

usecases.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 menu usecase RecordTripWizard on selected or container {

 // Assign a symbol to use case that is displayed in the context menu and tips pane

 symbol = SymbolRecordTrip;

 // Provide an implementation in object class "TripLog"

 variant TripLog {

 // Implement use case "RecordTripWizard" as virtual application

 impl = application {

 // The "main function" of the virtual application

 expression {

 // Check if the trip log is in "open" state

 if (cooobj.trlstate == TLS_OPEN) {

 // TODO: Initialize trip data and display dialog for recording trip

 }

 else {

 // Throw an error if the trip log is not in "open" state

 throw coort.SetError(#ErrTripLogClosed, #ErrTripLogClosed.Print(null,

 cooobj.objname));

 }

 }

 // Open the virtual application in a modal overlay window

 targetwindow = TARGETWINDOW_OVERLAY;

 }

 }

 }

}

errors.ducx-rs
resources FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 errormsg ErrTripLogClosed;

}

mlnames.lang
…

ErrTripLogClosed.errtext Trip log "%1$s" is already closed and must not be changed.

…

symbols.ducx-rs
resources FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 …

 symbol SymbolRecordTrip {

 symbolimages<symbolimageformat, content> = {

 { SF_GIF16, file("resources/symbols/RecordTrip-GIF16.gif") },

 { SF_PNG16, file("resources/symbols/RecordTrip-PNG16.png") },

 { SF_PNG20, file("resources/symbols/RecordTrip-PNG20.png") },

 { SF_PNG24, file("resources/symbols/RecordTrip-PNG24.png") },

 { SF_PNG256, file("resources/symbols/RecordTrip-PNG256.png") },

 { SF_PNG512, file("resources/symbols/RecordTrip-PNG512.png") }

 }

 }

}

 Developing Fabasoft Folio Cloud Apps 85

6.7.1.2 Defining a dialog

Alright, let‟s add the GUI portion to our wizard. After all, every virtual application should have a GUI –
otherwise there would be no point in implementing a use case as a virtual application.

Essentially, displaying a GUI in Fabasoft Folio Cloud means showing a form or form page to the user along
with some buttons, which are commonly referred to as “branches”. A so-called “dialog” serves as a
container for the form or form page and the branches.

For our wizard, we add a dialog with the reference DialogRecordTrip. In the dialog, we display a form

page showing the trlnewtrip property where users can enter their trip data. Then we create a new

Fabasoft app.ducx user interface file named wizards.ducx-ui and define a form page named

PageRecordTrip, which shows all the properties of the trlnewtrip structure except trpdrivername

and trpcanceled.

As mentioned before, trpdrivername will be populated based on the user object selected in the

trpdriver property, and there‟s no point in displaying the trpcanceled property when recording a new

trip since this property indicates if a trip was canceled.

Furthermore, notice that we turn all of the properties of the trlnewtrip structure into required fields (with

the exception of the two read-only properties trpduration and trpmileage) by adding a mustbedef

expression to the respective properties in the layout block. This way, a user has to provide values for all

of the required properties when recording a new trip.

For information purposes, we also display the trltrips property on the PageRecordTrip form page,

which is displaying all the trips recorded in the trip log in read-only mode.

Once the form page has been defined, we can go ahead and define the dialog by adding a dialog block to
the virtual application.

Using the form keyword, you can assign a form or form page to a dialog. In our example, we assign the

PageRecordTrip form page to DialogRecordTrip dialog.

Next, we need to declare the object on which the dialog is operating. The Fabasoft Folio vApp Engine
provides a mechanism for automatically loading and storing property values from and to the target object.

The target keyword is used to assign a target object to a dialog. Usually, the name of a variable holding

the desired target object is specified as the target. Additionally the target can be defined as an app.ducx
expression.

For our DialogRecordTrip dialog, we assign cooobj as the target object. cooobj is a special variable

representing the “current object”, i.e. the object the RecordTripWizard use case is invoked on. More

specifically, it‟s the trip log object on which you invoke the context menu to record a new trip.

The description keyword allows you to define multilingual information text in the mlnames.lang files,

which is then displayed in the dialog.

In the example, notice how we use the <~~> placeholders as part of the multilingual strings in the

mlnames.lang files to incorporate expressions into the strings. By invoking the COOSYSTEM@1.1:Print

action on StrRecordTrip, we can merge the multilingual string defined for StrRecordTrip into other

strings. However, when embedding expression in the mlnames.lang files you always have to use the

fully qualified reference to address component objects. Only COOSYSTEM@1.1 is optional.

Why do we include these <~~> placeholders in our strings? Well, if you decide to change a string later on

then you only have to make the change in one spot.

But why don‟t we do the same thing for FSCVENV@1.1001:StrCancel in the DialogRecordTrip.

description string then? That‟s because the string stored in FSCVENV@1.1001:StrCancel is prefixed

with an ampersand to designate the “C” of “Cancel” as a hotkey, and we definitely don‟t want to have
“&Cancel” in our description string.

In the next step, we have to define the branches for our dialog.

 86 Developing Fabasoft Folio Cloud Apps

The keyword cancelbranch allows you to define a “Cancel” branch for aborting the execution of a virtual

application. A cancelbranch is set to ignore any user input and is implicitly assigned caption

FSCVENV@1.1001:StrCancel and symbol COODESK@1.1:SymbolCancel. Moreover, the default

branch expression coouser.Cancel() is implicitly assigned to a cancelbranch, which throws an

exception to stop the execution of the virtual application.

The purpose of the second branch we add is to record the trip data entered by a user. Using the branch

keyword, we define a new branch named BranchRecordTrip and assign a caption string and a symbol

to the branch.

For defining the StrRecordTrip caption string, we create a new Fabasoft app.ducx resource file named

strings.ducx-rs, where we can define a new string object using the string keyword.

Remember that in order to pass the review, you must not use any hard-coded string literals in your code.

All the multilingual strings used in your Cloud App must be contained in the mlnames.lang files. That‟s

why we define a string object for the caption string in the Fabasoft app.ducx resource file instead of simply

assigning a string literal to the BranchRecordTrip branch.

Within the BranchRecordTrip branch, the expression keyword is used to define a branch handler,

which is invoked when a user clicks on the branch. However, before we go ahead with defining the code
for the branch handler we need to take care of invoking our dialog from the main function of the virtual
application.

Expressions that are hosted within a virtual application or within a dialog can make use of the detachment

operator -> to invoke another use case, a virtual application, or a dialog. For invoking a dialog, the

detachment operator -> must be followed by the reference of the dialog to be displayed.

Using the detachment operator, you can invoke any of the dialogs defined in the application block of

your virtual application. You can also invoke dialogs that have been defined in other applications for
reasons of reusability. However, reusing dialogs is strongly discouraged since unlike use cases and virtual
applications, they are not self-contained units with a defined interface.

In our wizard, we need to invoke the DialogRecordTrip dialog from the expression constituting the main

function of our virtual application. However, before we actually invoke the dialog, we want to initialize the

trlnewtrip structure with some default values by invoking the InitTrip use case (which is yet to be

defined) on the trip log.

Furthermore, in the branch handler expression of the BranchRecordTrip branch, we need to carry out

the following steps:

1. Store the trip data: For the recording of the trip data entered by the user in the trltrips property we

will implement a use case named RecordTrip in the TripLog object class. We will present the

actual implementation of the RecordTrip use case later on.

2. Save the changes: In order to save all the changes made, we force a hard commit of the current

transaction by invoking the CommitRoot action on the trip log.

3. Reinitialize the trlnewtrip structure: Based on the data from the last recorded trip and the default

values, we will reinitialize the trlnewtrip structure by invoking the InitTrip use case on the trip

log, which is also yet to be defined. This way, the user can instantly record another trip without having
to the leave the wizard.

Alright, why do we need this CommitRoot and what is it all about?

The idea of our wizard is that a user can record multiple trips one after the other until they cancel out by

clicking the “Cancel” branch, which triggers a coouser.Cancel(). This action rolls back all the changes

in the current transaction and exits the virtual application. In order to make sure that a trip is saved when
the user hits “Record Trip”, we force a commit of the current transaction.

The explicit CommitRoot is something you usually don‟t need in your virtual applications, because when

they are exited using a regular branch or a nextbranch, the current transaction is automatically

committed.

 Developing Fabasoft Folio Cloud Apps 87

Check out the chapter about virtual applications in [Faba11a] for more information on branches (including

the nextbranch) and branch handlers.

Also, you may have noticed that we use the term “action” when referring to CommitRoot. Well, Fabasoft

app.ducx supports different types of methods that can be invoked on an object:

 An action is considered to be the declaration of a private method that is implemented on one or more
object classes.

 A use case is considered to be the declaration of a public method. It can provide different
implementations on one or more object classes.

So which one should you pick for defining a method, use case or action? Generally, the answer is use
case, except for when implementing so-called “get actions”, “set actions” and “display actions”.

Refer to [Faba11a] to get a better understanding of the difference between use cases and actions as well
as for a discussion of get actions, set actions and display actions.

Example

usecases.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 menu usecase RecordTripWizard on selected or container {

 symbol = SymbolRecordTrip;

 variant TripLog {

 impl = application {

 expression {

 if (cooobj.trlstate == TLS_OPEN) {

 // Initialize "trlnewtrip" structure

 cooobj.InitTrip();

 // Display dialog for recording trip

 ->DialogRecordTrip;

 }

 else {

 throw coort.SetError(#ErrTripLogClosed, #ErrTripLogClosed.Print(null,

 cooobj.objname));

 }

 }

 dialog DialogRecordTrip {

 form = PageRecordTrip;

 target = cooobj;

 description = {}

 cancelbranch;

 branch BranchRecordTrip default {

 caption = StrRecordTrip;

 symbol = SymbolRecordTrip;

 expression {

 // Record the trip data entered by the user in the "trltrips" property

 cooobj.RecordTrip(cooobj.trlnewtrip);

 // Force a commit to save the changes

 coouser.CommitRoot();

 // Reinitialize "trlnewtrip" structure

 cooobj.InitTrip();

 }

 }

 }

 targetwindow = TARGETWINDOW_OVERLAY;

 }

 }

 88 Developing Fabasoft Folio Cloud Apps

 }

}

strings.ducx-rs
resources FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 string StrRecordTrip;

}

mlnames.lang
…

DialogRecordTrip.description Enter the required trip data and click

"<~#FSCLOGBOOK@111.100:

 StrRecordTrip.Print()~>" to record the trip in the trip

log or

 click "Cancel" to abort the operation.

DialogRecordTrip.mlname <~#FSCLOGBOOK@111.100:StrRecordTrip.Print()~>

StrRecordTrip.string Record Trip

…

wizards.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 formpage PageRecordTrip {

 dataset {

 trlnewtrip;

 trltrips;

 }

 layout {

 // Auto-generated layout block

 row {

 FSCLOGBOOK@111.100:trlnewtrip {

 detail = layout {

 row {

 FSCLOGBOOK@111.100:trpdepartureat {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 }

 FSCLOGBOOK@111.100:trpstartmileage {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 }

 }

 row {

 FSCLOGBOOK@111.100:trparrivalat {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 }

 FSCLOGBOOK@111.100:trpendmileage {

 colspan = 2;

 Developing Fabasoft Folio Cloud Apps 89

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 }

 }

 row {

 FSCLOGBOOK@111.100:trpduration {

 colspan = 2;

 labelposition = left;

 }

 FSCLOGBOOK@111.100:trpmileage {

 colspan = 2;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trpdepartureplace {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 }

 FSCLOGBOOK@111.100:trpdriver {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 }

 }

 row {

 FSCLOGBOOK@111.100:trpdestinationplace {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 }

 FSCLOGBOOK@111.100:trptype {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 }

 }

 row {

 FSCLOGBOOK@111.100:trppurpose {

 colspan = 4;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 }

 }

 }

 rowspan = 2;

 colspan = 4;

 labelposition = top;

 }

 }

 row {

 90 Developing Fabasoft Folio Cloud Apps

 }

 row {

 FSCLOGBOOK@111.100:trltrips {

 rowspan = 2;

 colspan = 4;

 labelposition = top;

 }

 }

 row {

 }

 }

 }

}

6.7.1.3 Restricting the selectable trip types

In the trptype property, users should only be able to select one of three possible trip types: “Private”,

“Business” or “Commute”.

To accomplish this task, we need to do three things:

 Define three terms to represent the selectable trip types

 Add a filter constraint (casually referred to as a “filter expression”) to the trptype property

 Disable the ability for users to create new terms and to search for other terms in the trptype property

The three terms must be defined in a Fabasoft app.ducx object model file. Consequently, we create a new

file named instances.ducx-om and add definitions for three instances of object class

FSCTERM@1.1001:TermComponentObject. Also, in the mlnames.lang files we assign multilingual

names to the three terms.

Next, we go back to the definition of the trptype property in the model.ducx-om file and add a filter

expression to the property returning the list of selectable values.

Finally, we have to make a little change to the PageRecordTrip form page in the wizards.ducx-ui

file, where we need to add a controlstyle block to the trptype property in the detail layout of the

trlnewtrip structure.

Using a controlstyle block, we can disable the ability for users to create new terms or search for

existing terms in the trptype property.

For further information on filter constraints and controlstyle blocks refer to [Faba11a].

Example

instances.ducx-om
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 instance TermComponentObject TermPrivate {

 }

 instance TermComponentObject TermBusiness {

 }

 instance TermComponentObject TermCommute {

 }

}

mlnames.lang
…

TermBusiness.mlname Business

TermCommute.mlname Commute

TermPrivate.mlname Private

…

 Developing Fabasoft Folio Cloud Apps 91

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 …

 struct Trip {

 …

 TermComponentObject trptype {

 filter = expression {

 // Filter the selectable terms to "Business", "Commute" and "Private"

 return [#TermBusiness, #TermCommute, #TermPrivate];

 }

 }

 …

 }

 …

}

wizards.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 formpage PageRecordTrip {

 …

 layout {

 // Auto-generated layout block

 row {

 FSCLOGBOOK@111.100:trlnewtrip {

 detail = layout {

 …

 row {

 …

 FSCLOGBOOK@111.100:trptype {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 // Disable creating and searching for terms

 controlstyle = expression {

 return [ControlStyle(CTRLSTYLE_DISABLECREATE),

 ControlStyle(CTRLSTYLE_DISABLESEARCH)];

 }

 }

 }

 …

 }

 …

 }

 }

 …

 }

 }

}

 92 Developing Fabasoft Folio Cloud Apps

6.7.1.4 Implementing the validation constraints

Our wizard still doesn‟t conduct any validation of the data entered by a user. So let‟s change that and add
some validation constraints for checking the date and time of departure and arrival as well as the mileage
information provided by the user!

Validation constraints can either be defined as part of a property definition or in the layout block of a form

page. Since we only want our validation constraints to be triggered when a new trip is recorded, it‟s

sufficient to add them to the PageRecordTrip form page that is displayed by the RecordTripWizard

virtual application.

Bare in mind that validation constraints – no matter if they are defined at property or form page level – are
only executed in the GUI, i.e. when a user is interactively entering data in a dialog.

In the layout block of the PageRecordTrip form page, we define a total of four validation constraints to

cover the following requirements:

 The date and time of departure must be before the date and time of arrival.

 The date and time of departure must be after the date and time of arrival of the last recorded, non-
canceled trip, if trips have been recorded in the trip log already.

 The starting mileage must be lower than the ending mileage.

 The starting mileage must not be lower than the ending mileage of the last recorded, non-canceled trip,
if trips have been recorded in the trip log already.

The commented example illustrates how to implement these validation constraints. For further information
on validation constraints refer to [Faba11a].

Example

wizards.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 formpage PageRecordTrip {

 …

 layout {

 // Auto-generated layout block

 row {

 FSCLOGBOOK@111.100:trlnewtrip {

 detail = layout {

 row {

 FSCLOGBOOK@111.100:trpdepartureat {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 // Validation constraint for validating the date and time of departure

 validate = expression {

 // Get the date and time of departure and arrival entered by the user

 datetime depdate = cooobj.trlnewtrip.trpdepartureat;

 datetime arrdate = cooobj.trlnewtrip.trparrivalat;

 // Get the date and time of arrival of the last recorded,

 // non-canceled trip

 datetime lastarrdate = cooobj.trltrips[!trpcanceled][0].

 trparrivalat;

 if (depdate != null && lastarrdate != null &&

 lastarrdate >= depdate) {

 Developing Fabasoft Folio Cloud Apps 93

 // Throw an error if the departure date entered by the user is

 // before the arrival date of the last recorded, non-canceled trip

 throw #ErrDepartureBeforeLastArrival;

 }

 else if (depdate != null && arrdate != null && arrdate <= depdate) {

 // Throw an error if the arrival date entered by the user is before

 // the departure date

 throw #ErrArrivalBeforeDeparture;

 }

 else {

 // Return "true" to indicate that the validation was successful

 return true;

 }

 }

 }

 FSCLOGBOOK@111.100:trpstartmileage {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 // Validation constraint for validating the starting mileage

 validate = expression {

 // Get the starting and ending mileage entered by the user

 float start = cooobj.trlnewtrip.trpstartmileage;

 float end = cooobj.trlnewtrip.trpendmileage;

 // Get the ending mileage of the last recorded, non-canceled trip

 float lastend = cooobj.trltrips[!trpcanceled][0].

 trpendmileage;

 if (start != null && lastend != null && lastend > start) {

 // Throw an error if the starting mileage entered by the user is

 // lower than the ending mileage of the last recorded,

 // non-canceled trip

 throw #ErrStartMileageLastEndMileage;

 }

 else if (start != null && end != null && start >= end) {

 // Throw an error if the ending mileage entered by the user is

 // lower than the starting mileage

 throw #ErrStartMileageEndMileage;

 }

 else {

 // Return "true" to indicate that the validation was successful

 return true;

 }

 }

 }

 }

 row {

 FSCLOGBOOK@111.100:trparrivalat {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 // Validation constraint for validating the date and time of arrival

 validate = expression {

 // Get the date and time of departure and arrival entered by the user

 datetime depdate = cooobj.trlnewtrip.trpdepartureat;

 datetime arrdate = cooobj.trlnewtrip.trparrivalat;

 if (arrdate != null && depdate != null && arrdate <= depdate) {

 // Throw an error if the arrival date entered by the user is before

 // the departure date

 throw #ErrArrivalBeforeDeparture;

 }

 94 Developing Fabasoft Folio Cloud Apps

 else {

 // Return "true" to indicate that the validation was successful

 return true;

 }

 }

 }

 FSCLOGBOOK@111.100:trpendmileage {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 // Validation constraint for validating the ending mileage

 validate = expression {

 // Get the starting and ending mileage entered by the user

 float start = cooobj.trlnewtrip.trpstartmileage;

 float end = cooobj.trlnewtrip.trpendmileage;

 if (start != null && end != null && start >= end) {

 // Throw an error if the ending mileage entered by the user is

 // lower than the starting mileage

 throw #ErrStartMileageEndMileage;

 }

 else {

 // Return "true" to indicate that the validation was successful

 return true;

 }

 }

 }

 }

 …

 }

 …

 }

 }

 …

 }

 }

}

errors.ducx-rs
resources FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 …

 errormsg ErrDepartureBeforeLastArrival;

 errormsg ErrArrivalBeforeDeparture;

 errormsg ErrStartMileageLastEndMileage;

 errormsg ErrStartMileageEndMileage;

}

mlnames.lang
…

ErrDepartureBeforeLastArrival.errtext Departure must be before arrival.

ErrArrivalBeforeDeparture.errtext Departure must be after arrival of the last

 recorded, non-canceled trip.

ErrStartMileageEndMileage.errtext Starting mileage must be lower than

 ending mileage.

ErrStartMileageLastEndMileage.errtext Starting mileage must not be lower than ending

 mileage of the last recorded, non-canceled

 trip.

…

 Developing Fabasoft Folio Cloud Apps 95

6.7.1.5 Implementing the user interface change constraints

Now we‟ll focus on user interface change constraints, casually referred to as “UI change handlers”. These
handy guys are invoked when a user changes a property on a form page by entering or selecting a value.

We‟re going to use them to instantly calculate the duration of the trip and the trip mileage as users enter
the required trip data.

Just like validation constraints, user interface change constraints can either be implemented at property or
form page level. And once again, we decide to implement them at form page level, because we only want

our calculation voodoo to happen in our RecordTripWizard virtual application.

The good thing is that the user interface change constraint we need to define for the trparrivalat

property is exactly identical to the one for the trpdepartureat property, and the one for the

trpendmileage property is identical to the expression for the trpstartmileage property. So we‟ll omit

the trparrivalat and trpendmileage properties in the following example. However, you still have to

go the whole nine yards and define all four of the user interface change constraints.

Example

wizards.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 formpage PageRecordTrip {

 …

 layout {

 // Auto-generated layout block

 row {

 FSCLOGBOOK@111.100:trlnewtrip {

 detail = layout {

 row {

 FSCLOGBOOK@111.100:trpdepartureat {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 validate = expression {

 …

 }

 // User interface change constraint for updating the trip

 // duration when the date and time of departure is changed

 change = expression {

 // Get the date and time of departure and arrival entered by the user

 datetime depdate = cooobj.trlnewtrip.trpdepartureat;

 datetime arrdate = cooobj.trlnewtrip.trparrivalat;

 // Check if departure and arrival date are valid, and if the arrival

 // date is after the departure date

 if (arrdate != null && depdate != null && arrdate > depdate) {

 // Calculate and store the duration of the trip

 cooobj.trlnewtrip.trpduration = arrdate - depdate;

 }

 else {

 // Empty duration property in case of incomplete or invalid data

 cooobj.trlnewtrip.trpduration = null;

 }

 }

 }

 96 Developing Fabasoft Folio Cloud Apps

 FSCLOGBOOK@111.100:trpstartmileage {

 colspan = 2;

 labelposition = left;

 mustbedef = expression {

 return true;

 }

 validate = expression {

 …

 }

 // User interface change constraint for updating the total mileage

 // when the starting mileage is changed

 change = expression {

 // Get the starting and ending mileage entered by the user

 float start = cooobj.trlnewtrip.trpstartmileage;

 float end = cooobj.trlnewtrip.trpendmileage;

 // Check if starting and ending mileage are valid, and if the

 // ending mileage is higher than the starting mileage

 if (start != null && end != null && end > start) {

 // Calculate and store the total mileage of the trip

 cooobj.trlnewtrip.trpmileage = end - start;

 }

 else {

 // Empty the trip mileage property is case of incomplete or

 // invalid data

 cooobj.trlnewtrip.trpmileage = null;

 }

 }

 }

 }

 …

 }

 …

 }

 }

 …

 }

 }

}

6.7.1.6 Implementing the “InitTrip” use case

Let‟s add some more bells and whistles to our wizard and populate the trlnewtrip structure with

initialization values to make it more convenient for users to fill out the required properties.

The following should be accomplished by the implementation of the InitTrip use case:

 Initialize the trpstartmileage property with the value of the trpendmileage property of the most

recent, non-canceled recorded trip.

 Initialize the trpdriver property with the current user.

 Initialize the trptype property with the “Business” term.

The RecordTripWizard virtual application is already invoking the InitTrip use case before showing

the DialogRecordTrip dialog, so all that‟s left to do is to provide the actual implementation of

InitTrip as follows in the example.

Note: Whenever you plan on changing an object using expression language, make sure you lock it first by

invoking the COOSYSTEM@1.1:ObjectLock action on the object. There are a few exceptions where you

don‟t need to lock the object before you change it, because Fabasoft Folio Cloud already locks it on your
behalf (e.g. in the object constructor, a set action or a user interface change constraint). However,
generally it‟s better to play it safe and place a lock on an object before changing it.

 Developing Fabasoft Folio Cloud Apps 97

Example

usecases.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 menu usecase RecordTripWizard on selected or container {

 …

 }

 usecase InitTrip() {

 variant TripLog {

 impl = expression {

 // Lock the trip log before making any changes

 cooobj.ObjectLock(true, true);

 // Initialize the "trlnewtrip" structure

 cooobj.trlnewtrip = {

 // Retrieve the last recorded, non-canceled trip from the "trltrips"

 // property and get the ending mileage from it, then write it into the

 // "trpstartmileage"property of the "trlnewtrip" structure

 trpstartmileage = cooobj.trltrips[!trpcanceled][0].trpendmileage,

 // Initialize the "trpdriver" property of the "trlnewtrip" structure with

 // the current user, which is always available in the "coouser" variable

 trpdriver = coouser,

 // Initialize the "trptype" property of the "trlnewtrip" structure with the

 // term representing "Business" to indicate that it is a business trip

 trptype = #TermBusiness

 };

 }

 }

 }

}

6.7.1.7 Implementing the “RecordTrip” use case

The purpose of the RecordTrip use case is to store the trip information passed to the trip parameter in

the trltrips property of the trip log.

We add some level of protection against incomplete trip information by checking if all the required
properties are populated with a value before performing the same checks also carried out by the validation
constraints.

Then, for reasons of better usability, we add the most recent trip at the beginning of the list of recorded
trips.

Instead of storing the object pointer referencing the selected user representing the driver, we store their

name as a string in the trpdrivername property. This guarantees that the values stored in the trip log

will not change once recorded, even if the driver is renamed afterwards.

The following example shows the full source code of the RecordTrip use case.

Example

usecases.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 menu usecase RecordTripWizard on selected or container {

 98 Developing Fabasoft Folio Cloud Apps

 …

 }

 usecase InitTrip() {

 …

 }

 usecase RecordTrip(Trip trip) {

 variant TripLog {

 impl = expression {

 // Lock the trip log before making any changes

 cooobj.ObjectLock(true, true);

 // Check if all the required fields are populated

 if (trip.trparrivalat != null && trip.trpdepartureat != null &&

 trip.trppurpose != null && trip.trpstartmileage != null &&

 trip.trpendmileage != null && trip.trpdriver != null &&

 trip.trptype != null && trip.trpdepartureplace != null &&

 trip.trpdestinationplace != null) {

 // Retrieve the last recorded, non-canceled trip and get the date and time of

 // arrival as well as the ending mileage from it

 Trip lasttrip = cooobj.trltrips[!trpcanceled][0];

 datetime lastarrdate = lasttrip.trparrivalat;

 float lastend = lasttrip.trpendmileage;

 if (trip.trpdepartureat != null && lastarrdate != null &&

 lastarrdate >= trip.trpdepartureat) {

 // Throw an error if the departure date entered by the user is before

 // the arrival date of the last recorded, non-canceled trip

 throw #ErrDepartureBeforeLastArrival;

 }

 else if (trip.trparrivalat <= trip.trpdepartureat) {

 // Throw an error if the arrival date entered by the user is before

 // the departure date

 throw #ErrArrivalBeforeDeparture;

 }

 else if (lastend > trip.trpstartmileage) {

 // Throw an error if the starting mileage entered by the user is lower

 // than the ending mileage of the last recorded, non-canceled trip

 throw #ErrStartMileageLastEndMileage;

 }

 else if (trip.trpstartmileage >= trip.trpendmileage) {

 // Throw an error if the ending mileage entered by the user is lower

 // than the starting mileage

 throw #ErrStartMileageEndMileage;

 }

 // Record the trip in the trip log if all the validations succeed

 else {

 if (trip.trpduration == null) {

 // Calculate trip duration if it is not set already

 trip.trpduration = trip.trparrivalat - trip.trpdepartureat;

 }

 if (trip.trpmileage == null) {

 // Calculate trip mileage if it is not set already

 trip.trpmileage = trip.trpendmileage - trip.trpstartmileage;

 }

 // Store the driver's name as string in the "trpdrivername" property and

 // empty the "trpdriver" property

 trip.trpdrivername = trip.trpdriver.objname;

 trip.trpdriver = null;

 // Store the vehicle ID retrieved from the logbook

 trip.trpvehicleid = cooobj.trllogbook.logvehicleid;

 // Record the new trip at the beginning of the "trltrips" list

 cooobj.trltrips = trip + cooobj.trltrips;

 }

 }

 else {

 // Throw an error if incomplete trip information has been provided

 Developing Fabasoft Folio Cloud Apps 99

 throw #ErrIncompleteTripInfo;

 }

 }

 }

 }

}

errors.ducx-rs
resources FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 …

 errormsg ErrIncompleteTripInfo;

}

mlnames.lang
…

ErrIncompleteTripInfo.errtext Incomplete trip information entered.

…

6.7.1.8 Discarding the values in the “trlnewtrip” property

What happens with the values in the trlnewtrip property when recording a new trip?

Well, since we don‟t do anything special with them, the values entered by the user in the trlnewtrip

structure are actually stored in the trip log object.

However, it doesn‟t make sense to store data in the trlnewtrip structure as the only purpose of it is to

allow users to enter values that should eventually be recorded in the trltrips property.

Therefore, we need to add a set action to empty the trlnewtrip structure before it‟s persisted.

Moreover, the trlnewtrip structure should also not be searchable, so we also have to add a so-called

“search action”.

We can use the predefined search action COOSYSTEM@1.1:AttrSearchNotPossible to prevent

searching in the trlnewtrip structure, but we‟ll have to implement our own set action for emptying the

trlnewtrip structure.

The following example demonstrates how to implement our requirements.

Example

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 struct Trip {

 …

 }

 enum TripLogState {

 …

 }

 class TripLog {

 …

 Trip trlnewtrip {

 // Add "AttrNewTripSet" as set action

 set = AttrNewTripSet;

 // Add "AttrSearchNotPossible" as search action

 search = AttrSearchNotPossible;

 }

 }

 class Logbook : CompoundObject {

 100 Developing Fabasoft Folio Cloud Apps

 …

 }

}

usecases.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 menu usecase RecordTripWizard on selected or container {

 …

 }

 usecase InitTrip() {

 …

 }

 usecase RecordTrip(Trip trip) {

 …

 }

 // Define a set action for emptying a property so all the values entered by the user

 // in the property are discarded and nothing is stored

 AttrNewTripSet(parameters as AttrSetPrototype) {

 variant TripLog {

 impl = expression {

 // Set the "value" parameter to "null" to discard all the entered values

 value = null;

 }

 }

 }

}

6.7.1.9 Adding the wizard to the context menu and tips pane

So we‟ve spent the last couple of pages describing how to implement this wizard for the recording of trips.
But how are we going to invoke it? Well, either using the context menu or using the tips pane of the trip log.

In the next step, we‟ll add the menu item implicitly generated by the menu use case described in the
chapter “Defining a menu use case” on page 83 to both the context menu and the tips pane of the trip log.

The easiest way to do this is to use predefined expansion points as illustrated by the example presented in
this chapter.

Note: Using a condition block, you can define a precondition in Fabasoft app.ducx expression language

that must be fulfilled for the menu items listed in the entries block to be included in the context menu or

tips pane.

Example

triplog.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 …

 extend menu MenuRecordTripWizard {

 // Include the "long text" for the menu item, which is displayed in the tips pane,

 // in the "mlnames.lang" files

 menulongtext = {}

 }

 extend class TripLog {

 Developing Fabasoft Folio Cloud Apps 101

 …

 menus {

 default = {

 expansions {

 // The "COODESK@1.1:MenuContextExpansion" expansion point allows you to add

 // custom menu items to the context menu of the instances of an object class

 MenuContextExpansion {

 // Only display the "Record Trip" menu in the context menu if the trip log

 // is in "open" state

 condition = expression {

 cooobj.trlstate == TLS_OPEN;

 }

 entries = {

 MenuRecordTripWizard

 }

 }

 // The "COODESK@1.1:MenuTaskPaneSelectedExpansion" expansion point allows you

 // to add custom menu items to the tips pane of instances of an object class

 TaskPaneSelectedExpansion {

 // Only display the "Record Trip" menu in the tips pane if the trip log

 // is in "open" state

 condition = expression {

 cooobj.trlstate == TLS_OPEN;

 }

 entries = {

 MenuRecordTripWizard

 }

 }

 }

 }

 }

 }

}

mlnames.lang
…

MenuRecordTripWizard.menulongtext Record a new trip in the selected trip logs

MenuRecordTripWizard.menustatetext Records new trips in selected trip logs

MenuRecordTripWizard.mlname Record Trip

…

In addition to the expansions for the default menu binding, you can also define scope-specific menu
bindings where the current team room‟s type (represented by the corresponding app object) is used as the
current scope.

For example, within a team room of type “Family Room”, the FSCFOLIOCLOUDFAMILY@1.1001:

AppFamilyRoom app object is used as the current scope. If you define menu expansions for the

FSCFOLIOCLOUDFAMILY@1.1001:AppFamilyRoom scope, these menus will only be displayed when the

user is working on a logbook within a team room of type “Family Room”.

For further information on scope-specific menu bindings refer to [Faba11a].

6.7.2 Adding a wizard for canceling a trip

Here‟s the good news: The hardest part of our work has been done, and from hereon in on it‟s only going
to get easier! But there are still a few things that need to be taken care of. A wizard for canceling recorded
trips, for instance.

Our requirements state that it must be possible for a user to cancel the last recorded, non-canceled trip of
a trip log. This feature should resemble what you would do by crossing out the last line in a paper logbook,
if it has been recorded in error.

Figure 42 shows the final product as we envisage it.

 102 Developing Fabasoft Folio Cloud Apps

Figure 42: Wizard for canceling recorded trips

Here‟s an outline of the tasks we need to complete for our trip cancelation wizard:

 First, we have to define another menu use case named CancelTripWizard.

 The menu use case needs to invoke a dialog (going by the name of DialogCancelTrip), which will

display a form page with the reference PageCancelTrip.

 We must define another error message, ErrNoTripsToCancel, which will be thrown if the wizard is

invoked but there are no recorded trips available to cancel.

 Also, we need a new string for the caption of the “Cancel Trip” branch of the dialog, which will be

assigned the reference StrCancelTrip.

 We will use the form designer to rename the trlnewtrip property to “Last Recorded Trip” on the

PageCancelTrip form page.

 Finally, we will add our menu item for invoking the wizard to the context menu and tips pane expansion

points of the TripLog object class.

Since you are already a battle-hardened Fabasoft app.ducx veteran by now, we‟ll do it all at once. Let the
comments in the example guide you as they explain the rationale behind our code.

Example

usecases.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 …

 menu usecase CancelTripWizard on selected or container {

 symbol = SymbolCancel;

 variant TripLog {

 impl = application {

 // Define application global variables for the whole list of recorded trips and

 // the index of the entry we want to cancel. Application global variables are

 // kept in memory throughout the entire virtual application, whereas "regular"

 // variables are not transported from dialog to dialog. Refer to [Faba11a] for

 // further information on application global variables.

 Trip[] triplist;

 integer tripidx;

 expression {

 // Check if the trip log is in "open" state

 if (cooobj.trlstate == TLS_OPEN) {

 Developing Fabasoft Folio Cloud Apps 103

 // Lock the trip log before making any changes

 cooobj.ObjectLock(true, true);

 // Get the list of all recorded trips from the trip log and count the

 // number of entries

 triplist = cooobj.trltrips;

 integer tripcount = count(triplist);

 // Find the index of the last recorded, non-canceled trip in the list and

 // save it in the "tripidx" variable

 for (integer idx=0; idx < tripcount; idx++) {

 Trip trip = triplist[idx];

 if (!trip.trpcanceled) {

 tripidx = idx;

 break;

 }

 }

 // Check if a non-canceled trip has been found in the list of

 // recorded trips

 if (tripidx != null) {

 // Populate the "trlnewtrip" property of the trip log with the last

 // recorded, non-canceled trip in order to display it to the user

 cooobj.trlnewtrip = triplist[idx];

 // Invoke the confirmation dialog

 ->DialogCancelTrip;

 }

 else {

 // Throw an error if no non-canceled trip could be found

 throw coort.SetError(

 #ErrNoTripsToCancel,

 #ErrNoTripsToCancel.Print(null, cooobj.objname));

 }

 }

 else {

 // Throw an error if the trip log is not in "open" state

 throw coort.SetError(

 #ErrTripLogClosed,

 #ErrTripLogClosed.Print(null, cooobj.objname));

 }

 }

 // Display the dialog in read-only mode

 dialog DialogCancelTrip readonly {

 form = PageCancelTrip;

 target = cooobj;

 description = {}

 cancelbranch;

 nextbranch {

 caption = StrCancelTrip;

 symbol = SymbolWastebasket;

 expression {

 // Set the "Canceled" flag for the displayed trip and overwrite the

 // "trltrips" property of the trip log with the "triplist" variable

 triplist[tripidx].trpcanceled = true;

 cooobj.trltrips = triplist;

 }

 }

 }

 targetwindow = TARGETWINDOW_OVERLAY;

 }

 }

 }

}

wizards.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 104 Developing Fabasoft Folio Cloud Apps

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 …

 formpage PageCancelTrip {

 dataset {

 trlnewtrip;

 }

 layout {

 // Auto-generated layout block

 row {

 FSCLOGBOOK@111.100:trlnewtrip {

 detail = layout {

 row {

 FSCLOGBOOK@111.100:trpdepartureat {

 colspan = 2;

 labelposition = left;

 }

 FSCLOGBOOK@111.100:trpstartmileage {

 colspan = 2;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trparrivalat {

 colspan = 2;

 labelposition = left;

 }

 FSCLOGBOOK@111.100:trpendmileage {

 colspan = 2;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trpduration {

 colspan = 2;

 labelposition = left;

 }

 FSCLOGBOOK@111.100:trpmileage {

 colspan = 2;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trpdepartureplace {

 colspan = 2;

 labelposition = left;

 }

 FSCLOGBOOK@111.100:trpdrivername {

 colspan = 2;

 labelposition = left;

 }

 }

 row {

 FSCLOGBOOK@111.100:trpdestinationplace {

 colspan = 2;

 labelposition = left;

 }

 FSCLOGBOOK@111.100:trptype {

 colspan = 2;

 labelposition = left;

 }

 }

 Developing Fabasoft Folio Cloud Apps 105

 row {

 FSCLOGBOOK@111.100:trppurpose {

 colspan = 4;

 labelposition = left;

 }

 }

 }

 rowspan = 2;

 colspan = 4;

 labelposition = top;

 }

 }

 row {

 }

 }

 }

 …

 extend menu MenuCancelTripWizard {

 // Include the "long text" for the menu item, which is displayed in the tips pane,

 // in the "mlnames.lang" files

 menulongtext = {}

 }

 extend class TripLog {

 …

 menus {

 default = {

 expansions {

 MenuContextExpansion {

 condition = expression {

 cooobj.trlstate == TLS_OPEN;

 }

 entries = {

 MenuRecordTripWizard

 }

 }

 // Add the "Cancel Trip" menu item to the context menu by adding it to the

 // expansion point

 MenuContextExpansion {

 condition = expression {

 // Display the "Cancel Trip" menu item only if the trip log is in "open"

 // state and if it contains non-canceled trips

 cooobj.trlstate == TLS_OPEN &&

 count(cooobj.trltrips[!trpcanceled]) > 0;

 }

 entries = {

 MenuCancelTripWizard

 }

 }

 TaskPaneSelectedExpansion {

 condition = expression {

 cooobj.trlstate == TLS_OPEN;

 }

 entries = {

 MenuRecordTripWizard

 }

 }

 // Add the "Cancel Trip" menu item to the tips pane by adding it to the

 // expansion point

 TaskPaneSelectedExpansion {

 condition = expression {

 // Display the "Cancel Trip" menu item only if the trip log is in "open"

 // state and if it contains non-canceled trips

 cooobj.trlstate == TLS_OPEN &&

 count(cooobj.trltrips[!trpcanceled]) > 0;

 106 Developing Fabasoft Folio Cloud Apps

 }

 entries = {

 MenuCancelTripWizard

 }

 }

 }

 }

 }

 }

}

strings.ducx-rs
resources FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 …

 string StrCancelTrip;

}

errors.ducx-rs
resources FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 …

 errormsg ErrNoTripsToCancel;

}

mlnames.lang
…

DialogCancelTrip.description If you want to cancel the displayed trip click

 "<~#FSCLOGBOOK@111.100:StrCancelTrip.Print()~>"

 to continue or click "Cancel" to abort the

 operation.

DialogCancelTrip.mlname Cancel Trip

ErrNoTripsToCancel.errtext There are no trips to cancel in trip

 log "%1$s".

MenuCancelTripWizard.menulongtext Cancel the last recorded trip in the selected

 trip logs

MenuCancelTripWizard.menustatetext Cancels the last recorded trip in selected trip

 logs

MenuCancelTripWizard.mlname Cancel Trip

…

Figure 43 shows how to use the form designer to rename a property on a form page. For further details on
how to use the form designer refer to [Faba11a].

 Developing Fabasoft Folio Cloud Apps 107

Figure 43: Renaming a property in the form designer

All done! You now have a fully working wizard for canceling recorded trips. Piece of cake, wasn‟t it?

6.7.3 Adding a wizard for closing a trip log

The last virtual application we‟re going to implement is the wizard for closing a trip log so that users can no
longer record any trips in it.

So what‟s the point of this feature? Well, we don‟t want users to be able to make changes to a trip log after
a certain event has occurred (e.g. sending a trip log to the department head for approval).

The wizard, depicted in Figure 44, follows the same principle as the wizards for recording and canceling
trips, so implementing it won‟t be a challenge for you.

 108 Developing Fabasoft Folio Cloud Apps

Figure 44: Wizard for closing a trip log

As this is mainly a repetition of the concepts already covered before, we‟ve omitted most of the comments
in the example code.

Example

usecases.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 …

 menu usecase CloseTripLogWizard on selected or container {

 symbol = SymbolLock;

 variant TripLog {

 impl = application {

 expression {

 if (cooobj.trlstate == TLS_OPEN) {

 cooobj.ObjectLock(true, true);

 ->DialogCloseTripLog;

 }

 else {

 throw coort.SetError(#ErrTripLogClosed,

 #ErrTripLogClosed.Print(null, cooobj.objname));

 }

 }

 dialog DialogCloseTripLog readonly {

 // Display the same form page that is also used for reading/editing the

 // properties of a trip log

 form = PageTripLog;

 target = cooobj;

 description = {}

 cancelbranch {

 caption = StrNo;

 symbol = SymbolNo;

 Developing Fabasoft Folio Cloud Apps 109

 }

 nextbranch {

 caption = StrYes;

 symbol = SymbolYes;

 expression {

 // Set the state of the trip log to "closed"

 cooobj.trlstate = TLS_CLOSED;

 }

 }

 }

 targetwindow = TARGETWINDOW_OVERLAY;

 }

 }

 }

}

wizards.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 …

 extend menu MenuCloseTripLogWizard {

 menulongtext = {}

 }

 extend class TripLog {

 …

 menus {

 default = {

 expansions {

 …

 MenuContextExpansion {

 condition = expression {

 cooobj.trlstate == TLS_OPEN;

 }

 entries = {

 MenuCloseTripLogWizard

 }

 }

 TaskPaneSelectedExpansion {

 condition = expression {

 cooobj.trlstate == TLS_OPEN;

 }

 entries = {

 MenuCloseTripLogWizard

 }

 }

 }

 }

 }

 }

}

mlnames.lang
…

DialogCloseTripLog.description Click "Yes" to close this trip log or "No" to

 abort the operation.

DialogCloseTripLog.mlname Close Trip Log "<~cooobj.objname~>"

MenuCloseTripLogWizard.menulongtext Close the selected trip logs

MenuCloseTripLogWizard.menustatetext Closes the selected trip logs

MenuCloseTripLogWizard.mlname Close Trip Log

…

 110 Developing Fabasoft Folio Cloud Apps

6.7.4 Adding a display action to show the number of recorded trips

In this chapter, we will show you how to implement a display action for the trltrips property of a trip log.

The purpose of the display action is to render a string for the trltrips property that is shown when the

property is displayed as a column of a list.

By default, when the trltrips property is displayed as a column of a list, the name of the property

(“Recorded Trips”) and the number of entries in the list of recorded trips (in square brackets) is shown (e.g.
“Recorded Trips, ... [3]” if there are three recorded trips).

As this default display string is not all that appealing, we will improve the user experience by defining our
own display action, which will display “1 trip” instead of “Recorded Trips, ... [1]” (in case of a single entry in
the list of recorded trips) or “3 trips” instead of “Recorded Trips, ... [3]” (in case of three recorded trips) as
illustrated by Figure 45.

Figure 45: Displaying a property as a list column

Note: Refer to chapter “Defining the columns for the „logtriplogs‟ property” on page 75 to learn how to
define the default column settings for the lists of your Cloud App‟s object classes.

The following example documents all the necessary steps for the implementation of the display action. In
addition to the display action, we also need to define two string objects for the multilingual string literals.

Furthermore, we use the display keyword to assign the display action to the trltrips property.

Example

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 …

 class TripLog {

 …

 Trip[] trltrips readonly(ui) {

 // Assign the "AttrTripDisplay" display action to the "trltrips" property

 display = AttrTripDisplay;

 }

 …

 }

 …

}

 Developing Fabasoft Folio Cloud Apps 111

usecases.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 …

 AttrTripDisplay(parameters as AttrGetDispPrototype) {

 variant TripLog {

 impl = expression {

 // Retrieve the number of entries in the list of recorded trips and filter out

 // the canceled entries

 integer tripcount = count(cooobj.trltrips[!trpcanceled]);

 // Use the COOSYSTEM@1.1:Print action to format the number of trips into the

 // appropriate string object holding the correct multilingual string and

 // return the formatted string in the output parameter named "string"

 string = (tripcount == 1)?

 #StrDisplayFormatSingleTrip.Print(null, tripcount) :

 #StrDisplayFormatMultipleTrips.Print(null, tripcount);

 }

 }

 }

}

strings.ducx-rs
resources FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 …

 string StrDisplayFormatMultipleTrips;

 string StrDisplayFormatSingleTrip;

}

mlnames.lang
…

StrDisplayFormatMultipleTrips.string %1$d trips

StrDisplayFormatSingleTrip.string %1$d trip

…

6.7.5 Calculating the date of the first and last entry in a trip log

The next challenge we‟re going to tackle is the updating of the trlfrom and trluntil properties when

the list of recorded trips is changed.

The trlfrom property must be populated with the departure date of the oldest recorded, non-canceled trip

in the trltrips property and the trluntil property must contain the arrival date of the most recently

recorded, non-canceled trip.

To accomplish this task, we define and implement a set action named AttrTripsSet and attach it to the

trltrips property, as illustrated by the following example.

Example

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 …

 class TripLog {

 …

 112 Developing Fabasoft Folio Cloud Apps

 Trip[] trltrips readonly(ui) {

 // Assign the "AttrTripsSet" set action to the "trltrips" property

 set = AttrTripsSet;

 display = AttrTripDisplay;

 }

 …

 }

 …

}

usecases.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 …

 AttrTripsSet(parameters as AttrSetPrototype) {

 variant TripLog {

 impl = expression {

 // The "value" parameter contains the list of recorded trips

 Trip[] triplist = value;

 if (triplist != null) {

 // Get only the non-canceled trips from the list

 triplist = triplist[!trpcanceled];

 if (triplist != null) {

 // Get the departure date from the oldest recorded trip and save it in the

 // "trlfrom" property

 cooobj.trlfrom = triplist[count(triplist)-1].trpdepartureat;

 // Get the arrival date from the most recently recorded trip and save it in

 // the "trluntil" property

 cooobj.trluntil = triplist[0].trparrivalat;

 }

 }

 }

 }

 }

}

6.8 Embedding Google visualizations

Let‟s add some color to your Cloud App by integrating a chart!

Fabasoft Folio Cloud makes it easy to integrate fancy charts in your Cloud App using the Google Chart
Tools.

For a complete list of the available types of charts and additional documentation refer to

http://code.google.com/apis/visualization/documentation/gallery.html.

To integrate a Google chart, you have to carry out the following steps:

 Add a reference to the FSCGOOGLEVISUALS@1.1001 software component to your Cloud App project.

 Define an instance of FSCGOOGLEVISUALS@1.1001:Visual in an object model file and assign the

desired chart type (represented by an instance of FSCGOOGLEVISUALS@1.1001:Package, e.g.

BarChart, ColumnChart, AreaChart, AnnotatedTimeLine) using the package keyword. The

so-called “visual” represents the actual chart and can be customized using the params keyword with

the parameters described in the Google Chart Tools documentation

(see http://code.google.com/apis/visualization/documentation/gallery.html).

 Define a data structure that corresponds to the data required by the chart you want to integrate. For
instance, a bar chart requires different data than an annotated time line or a gauge chart.

 Developing Fabasoft Folio Cloud Apps 113

 Define a property for providing the data to be displayed in the chart and assign it to an object class.

 Implement a get action for calculating the data and assign it to the property.

 Include the property on a form page and assign your visual to the property.

For our example, we will integrate an annotated time line chart showing the mileage information for every
recorded trip of a trip log (see Figure 46).

So here‟s the detailed list of steps needed to integrate the chart depicted in Figure 46 into your Cloud App:

 Add a reference to the FSCGOOGLEVISUALS@1.1001 software component to your Cloud App project.

 Define an instance of FSCGOOGLEVISUALS@1.1001:Visual with the reference VisualTimeLine

in the instances.ducx-om file and assign it the AnnotatedTimeLine package using use the

package keyword. Using the params keyword, you can customize the chart (e.g. define the thickness

of the lines).

 Using the Google Chart Tools documentation, we can find out that for an annotated time line chart the

first column is of type datetime, and specifies the X value on the chart and the Y value is a number

that describes the corresponding date and time.

 In the model.ducx-om file, define a data structure with the reference TimeLine that corresponds to

the requirements obtained from the Google Chart Tools documentation and is comprised of a

datetime property with the reference tltripdate and a float property with the reference

tltripmileage.

 As our chart should be part of a trip log, we add a property of type TimeLine[] to the TripLog object

class and assign it the reference trltimeline. The property should only be calculated on demand

and no values should be stored in it. Therefore, we add the readonly property modifier suffix (see

[Faba11a]).

 In the usecases.ducx-uc file, we define and implement a get action with the reference

AttrTimeLineGet for calculating the data for the chart. Afterwards, we assign the

AttrTimeLineGet get action to the trltimeline property in the model.ducx-om file using the

get keyword.

 Finally, we define a new form page with the reference PageTimeLine as part of the FormTripLog

form in the triplog.ducx-ui file. In the dataset block, reference the trltimeline property and

use the form designer to place the trltimeline property on the form page. Then assign the

FSCGOOGLEVISUALS@1.1001:ControlStdVisual control to the trltimeline property by

selecting the property on the form designer canvas, right-clicking it to open the context menu and

selecting the FSCGOOGLEVISUALS@1.1001:ControlStdVisual control. After that, select the

“Properties” view and enter FSCLOGBOOK@111.100:VisualTimeLine in the Control arguments field

(see Figure 47).

 114 Developing Fabasoft Folio Cloud Apps

Figure 46: Using a Google Chart to display mileage information

Figure 47: Assigning a control to a property

The following example documents all the required steps to integrate the annotated time line chart in your
Cloud App.

 Developing Fabasoft Folio Cloud Apps 115

Example

instances.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCGOOGLEVISUALS@1.1001;

 …

 instance Visual VisualTimeLine {

 package = AnnotatedTimeLine;

 params<key, value> = {

 // Increase the thickness of the lines in the chart

 {"thickness", "3"}

 }

 }

}

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 …

 struct TimeLine {

 datetime tltripdate;

 unsigned float(6,2) tltripmileage;

 }

 class TripLog {

 …

 TimeLine[] trltimeline readonly {

 get = AttrTimeLineGet;

 copy = NoOperation;

 }

 }

 …

}

usecases.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 …

 AttrTimeLineGet(parameters as AttrGetPrototype) {

 variant TripLog {

 impl = expression {

 // Define a variable for building the time line data

 TimeLine[] timeline;

 // Iterate over all the non-canceled recorded trips

 for (Trip trip : cooobj.trltrips[!trpcanceled]) {

 // Add an entry to the "timeline" list and populate it with the date and

 // time of departure and the trip mileage of the current trip

 timeline += {

 tltripdate = :>trip.trpdepartureat,

 tltripmileage = :>trip.trpmileage

 };

 }

 // Return the time line data in the "value" variable

 value = timeline;

 }

 }

 }

 116 Developing Fabasoft Folio Cloud Apps

}

triplog.ducx-ui
userinterface FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import COODESK@1.1;

 import COOSEARCH@1.1;

 import FSCVAPP@1.1001;

 form FormTripLog {

 formpage PageTripLog {

 …

 }

 formpage PageTimeLine {

 symbol = SymbolChart;

 dataset {

 trltimeline;

 }

 layout {

 // Auto-generated layout block

 row {

 FSCGOOGLEVISUALS@1.1001:ControlStdVisual("FSCLOGBOOK@111.100:VisualTimeLine")

 FSCLOGBOOK@111.100:trltimeline {

 rowspan = 2;

 colspan = 4;

 labelposition = top;

 }

 }

 row {

 }

 }

 }

 }

 …

}

In addition to the Google Chart Tools, Fabasoft Folio Cloud also supports the jQuery JavaScript library,
which allows you to build and integrate sophisticated custom controls for creating fantastic user
experiences such as management dashboards.

Elaborating on the jQuery JavaScript library goes beyond the scope of this book. For further information on

the jQuery JavaScript library refer to http://www.jquery.com.

6.9 The finishing touches

So far, so good! We‟ve come a long way already, but there are still a few flaws in your Cloud App that we
need to fix in order to make it perfect.

In this chapter, we‟ll give your Cloud App the finishing touches before we start with the testing phase.

6.9.1 Defining a name build for the „TripLog‟ object class

In many situations, you want the name of the instances of a particular object class to be built automatically
based on rules so that users don‟t have to manually assign a name.

For our trip logs, we will define a name build that automatically generates a name for each instance that is

comprised of the values of the trllogbook, trlfrom, trluntil and trlstate properties.

A generated name for a trip log should look like this example:

Open Trip Log for “My Logbook” (May 1, 2011 – Apr 30, 2012)

 Developing Fabasoft Folio Cloud Apps 117

To implement this requirement, we have to carry out the following steps:

 Define a NameBuild customization for building the name of a trip log

 Override the FSCCONFIG@1.1001:EvaluateGenericNameBuild action with the

FSCCONFIG@1.1001:MethodGenericNameBuild method definition in object class TripLog

 Define pattern strings for formatting the name of a trip log

Note: All customizations must be defined in a Fabasoft app.ducx customization file with a .ducx-cu

extension. For further information on customization points and customizations refer to [Faba11a].

The following example demonstrates how to implement the name build for trip logs described before.

In order to suppress the default dialog box that is displayed when creating a new object (i.e. for entering a

name), we also override the COODESK@1.1:RenameObject action with the virtual application

FSCVAPP@1.1001:NoOperation.

Example

customizations.ducx-cu
customization FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCCONFIG@1.1001;

 default {

 customize NameBuild<TripLog> {

 // Reference all properties that have an impact on the generated name of the

 // object in the "properties" block

 properties = {

 trlfrom,

 trluntil,

 trllogbook,

 trlstate

 }

 // The "build" expression must yield a string that is set to the new name of

 // the trip log

 build = expression {

 // Get the date of the first and last recorded trip from the trip log

 datetime from = cooobj.trlfrom;

 datetime until = cooobj.trluntil;

 if (from != null && until != null) {

 // If the trip log already contains recorded trips, the name should be

 // generated according to the pattern defined in the

 // "StrTripLogNameFormatLong" string

 return #StrTripLogNameFormatLong.Print(null, cooobj.Format(cooobj.trlstate),

 cooobj.trllogbook.objname, cooobj.Format(from, "d"),

 cooobj.Format(until, "d"));

 }

 else {

 // If the trip log does not contain any recorded trips yet, the name should

 // be generated according to the pattern defined in the

 // "StrTripLogNameFormatShort" string

 return #StrTripLogNameFormatShort.Print(null, cooobj.Format(cooobj.trlstate),

 cooobj.trllogbook.objname);

 }

 }

 }

 }

}

usecases.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 118 Developing Fabasoft Folio Cloud Apps

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 import FSCCONFIG@1.1001;

 …

 override EvaluateGenericNameBuild {

 variant TripLog {

 impl = MethodGenericNameBuild;

 }

 }

 override RenameObject {

 variant TripLog {

 impl = FSCVAPP@1.1001:NoOperation;

 }

 }

}

strings.ducx-rs
resources FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 …

 string StrTripLogNameFormatShort;

 string StrTripLogNameFormatLong;

}

mlnames.lang
…

StrTripLogNameFormatLong.string %1$s Trip Log for "%2$s" (%3$s - %4$s)

StrTripLogNameFormatShort.string %1$s Trip Log for "%2$s"

…

6.9.2 Establishing an ACL reference between trip log and logbook

The access control list (ACL) of an object governs which users or teams get access to the object as well as
the level of access they get (e.g. read access, change access or full control).

By default, objects created outside of a team room are assigned the ACL “ACL for Objects Without a Team
Room” whereas objects created within a team room get the ACL “ACL for Objects in Team Rooms”.

For further information on ACLs refer to [Faba11a] and the Fabasoft Folio Cloud online help.

In your Cloud App, trip logs always belong to a logbook and should also share the same ACL.

Instead of having to worry about keeping the ACLs of a logbook and the associated trip logs in sync, we
use a better mechanism for making sure that trip logs always get the same ACL as the logbook they
belong to: We establish an ACL reference that points from the trip log to the logbook. Once the ACL
reference has been established, the ACL of the parent (i.e. the logbook) is also used for the subordinated
objects (i.e. the trip logs).

To implement this requirement, create a new Fabasoft app.ducx use case file named overrides.ducx-

uc and add an override for the COOSYSTEM@1.1:ObjectConstructor action as depicted in the

following example.

Example

overrides.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 import COODESK@1.1;

 Developing Fabasoft Folio Cloud Apps 119

 override ObjectConstructor {

 variant TripLog {

 impl = expression {

 // Invoke the super method

 super();

 // Get the container object where the trip log was created in

 Object containerobj = cooobj.GetSelected()[8];

 // Check if the container object is a logbook

 if (containerobj != null && containerobj.HasClass(#Logbook)) {

 // Set an ACL reference to the logbook and remove the pointer to the

 // current ACL of the trip log

 cooobj.objaclref = containerobj;

 cooobj.objaclobj = null;

 }

 }

 }

 }

}

Refer to [Faba11a] for detailed information about triggers in Fabasoft Folio Cloud.

6.9.3 Deleting the trip logs along with the logbook

When deleting a logbook, the associated trip logs should be automatically deleted along with the logbook.

To accomplish this, assign the COOSYSTEM@1.1:AttrChildrenDestructor destructor action to the

logtriplogs property using the dtor keyword.

Example

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 …

 class Logbook : CompoundObject {

 …

 unique TripLog[] logtriplogs {

 link = trllogbook;

 child = true;

 // Destructor action for deleting the trip logs along with the logbook

 dtor = AttrChildrenDestructor;

 }

 }

}

6.9.4 Things to consider when dealing with team rooms

Team rooms are the central instrument for collaboration in Fabasoft Folio Cloud. Therefore, your Cloud
App must be able to support team rooms. More precisely, it must be possible to create or move the
instances of your object classes into a team room without breaking your Cloud App‟s functionality.

There are a few things that you have to be aware of when dealing with team rooms:

 By default, all objects of a team room are assigned the FSCFOLIOCLOUD@1.1001:

TeamRoomObjectsACL ACL, which grants access to all members of the team room.

 When an object is created within or moved into a team room, it becomes part of that team room, it is

assigned the FSCFOLIOCLOUD@1.1001:TeamRoomObjectsACL ACL, its owner is changed to the

owner of the team room and the object counts towards the team room owner‟s quota.

 The object‟s children also should become part of the team room.

 120 Developing Fabasoft Folio Cloud Apps

When an object is assigned to a team room, the objects referenced in an object pointer or object list

property are not automatically assigned to the parent object‟s team room unless the child keyword has

been set to true for the corresponding property.

Let us explain that in the context of our Cloud App:

 A logbook is comprised of trip logs that logically belong to the logbook.

 If you move a logbook into a team room, it becomes part of the team room. The owner of the logbook
object is changed to the team room‟s owner, and its ACL is set to

FSCFOLIOCLOUD@1.1001:TeamRoomObjectsACL.

 The trip logs of the logbook are not assigned to this team room unless you set the child property to

true for the logtriplogs property. That‟s bad, because they logically belong to the logbook and

therefore should also be part of the same team room as the logbook.

If child objects are not assigned to the same team room as their parent, a bunch of problems may arise:

 They are not automatically assigned the FSCFOLIOCLOUD@1.1001:TeamRoomObjectsACL ACL,

which means that the team room members may be unable to access them.

 The owner is not changed to the team room‟s owner, so they count towards the quota of their original
owner.

It basically all boils down to setting the child property to true for all of your object pointer properties and

lists referencing objects that logically are children of the current object.

In your Cloud App, there is only one parent-child relationship so far. Therefore, we only had to set the

child keyword to true for the logtriplogs property, which is pointing from the logbook to the

associated trip logs.

Note: You don‟t have to set the child keyword to true for the trllogbook property of the trip log

(which is the one pointing from the trip log back to the logbook it belongs to), because it only needs to be
set on the property belonging to the parent object (which, in our example, is the logbook).

The following example shows how to set the child keyword to true for an object pointer or object list

property. For further information refer to [Faba11a].

Example

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 …

 class Logbook : CompoundObject {

 …

 unique TripLog[] logtriplogs {

 …

 child = true;

 …

 }

 }

}

6.9.5 Activating the license check for your object classes

If a user does not have a valid license for your Cloud App, all of the menu entries (e.g. in the context menu
and the tips pane) provided by your Cloud App are automatically disabled and the user cannot create any
instances of the object classes of your Cloud App.

 Developing Fabasoft Folio Cloud Apps 121

However, by default the user can still access existing instances of your object classes (created by another
user with a valid license for your Cloud App), and read and edit the properties of these objects (provided
that they have sufficient access rights).

For example, if Wanda Carney acquires a license for your Cloud App, creates a new logbook within a team
room and then invites William Briere to the team, William will be able to read and edit the properties of
Wanda‟s logbook. Nevertheless, William will not be able to create trips logs within the logbook, record or
cancel trips.

If you want to prevent users without a valid license for your Cloud App from accessing objects belonging to
your Cloud App (see Figure 48), you have to assign the app object representing your Cloud App

(AppFSCLOGBOOK) to the COOATTREDIT@1.1:compapps property of the object classes of your Cloud

App (see example).

Figure 48: Cloud App license check prompting a user to obtain a valid license

Example

model.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COOATTREDIT@1.1;

 import FSCTERM@1.1001;

 …

 class TripLog {

 compapps = AppFSCLOGBOOK;

 …

 }

 class Logbook : CompoundObject {

 compapps = AppFSCLOGBOOK;

 …

 }

 …

}

6.9.6 Reacting to app state changes

You can define an app state change action that is invoked when a user activates or deactivates your Cloud
App, e.g. to perform initialization or cleanup steps.

The COOATTREDIT@1.1:AppStateChangeActionPrototype prototype must be assigned to the app

state change action.

Note: Your implementation of the app state change action must be error tolerant. For instance, you might
have to deal with situations where you can‟t access the objects you want to process because they are
locked or protected with a security level.

 122 Developing Fabasoft Folio Cloud Apps

Example

app.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 import COOATTREDIT@1.1;

 import COOTC@1.1001;

 instance App AppFSCLOGBOOK {

 …

 appstatechangeaction = ChangeAppState;

 }

}

usecases.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 import FSCCONFIG@1.1001;

 import COOATTREDIT@1.1;

 …

 ChangeAppState(parameters as AppStateChangeActionPrototype) {

 variant App {

 impl = expression {

 if (active != oldstate) {

 if (active) {

 // TODO: Cloud App has been activated, perform initializations...

 }

 else {

 // TODO: Cloud App has been deactivated, perform cleanup...

 }

 }

 }

 }

 }

}

6.9.7 Defining an app category

An app category allows you to combine the object classes belonging to your Cloud App into a distinct
category that is displayed when a user is creating a new object.

Defining an app category for your Cloud App is a good approach for getting more user attention as it is
prominently featured in the “Create” dialog box depicted in Figure 49.

 Developing Fabasoft Folio Cloud Apps 123

Figure 49: App categories in the “Create” dialog box

To define an app category, add a reference to the COOTC@1.1001 software component and use the

instance keyword to define an app category instance with the reference AppCategoryLogbook in the

app.ducx-om file. Then add the object classes belonging to your Cloud App to the templates list of the

app category.

Example

app.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 import COOATTREDIT@1.1;

 import COOTC@1.1001;

 instance App AppFSCLOGBOOK {

 …

 }

 instance AppCategory AppCategoryLogbook {

 symbol = SymbolAppFSCLOGBOOK;

 apps = {

 AppFSCLOGBOOK

 }

 templates = {

 Logbook,

 TripLog

 }

 }

}

6.9.8 Defining the context-sensitive help

At the beginning of the object modeling section, we mentioned that you are required to document your
source code using Javadoc style comments.

Unfortunately, that‟s not all of the documentation work you have to do as a Cloud App developer.

 124 Developing Fabasoft Folio Cloud Apps

At Fabasoft, we strongly believe that a solid Cloud App has to come with solid user documentation in order
to deliver an exceptional user experience, and this is why we also require you to provide context-sensitive
help for your Cloud App.

Users can easily turn the context-sensitive help on and off by a simple click on the “?” button available in
all dialogs (which is visible unless it has been explicitly deactivated for a dialog). Figure 50 shows how the
context-sensitive help is displayed in a typical dialog.

So how can you provide context-sensitive help for your Cloud App?

You may have already noticed the explanations.userdoc files underneath the language-specific

folders in the resources folder of your Cloud App project. This is where you have to define the context-

sensitive help.

Basically, an explanations.userdoc file is content in XML format comprising an explanation node

for each element of your Cloud App that needs to be included in the context-sensitive help. The Fabasoft
app.ducx compiler automatically updates the files when you add new properties and other elements to your
Cloud App.

All you need to do is replace the “Your content goes here!” placeholders with the actual help text.

Be aware that you have to obey XML formatting and escaping rules when modifying the explanations.

userdoc files.

Example

explanations.userdoc
<?xml version="1.0" encoding="UTF-8"?>

<explanations xmlns="http://www.fabasoft.com/ducx/explain/20090309#">

 <explanation reference="trllogbook" type="detail">

 <content>

 Logbook

 <p>This field displays the logbook this trip log belongs to.</p>

 </content>

 </explanation>

 <explanation reference="trlstate" type="detail">

 <content>

 State

 <p>This field displays the current state of the trip log.</p>

 </content>

 </explanation>

 <explanation reference="trluntil" type="detail">

 <content>

 Last Trip on

 <p>This field displays the arrival date of the last trip recorded in this trip.

 </p>

 </content>

 </explanation>

 <explanation reference="trlfrom" type="detail">

 <content>

 First Trip on

 <p>This field displays the departure date of the first trip recorded

 in this trip log. </p>

 </content>

 </explanation>

 <explanation reference="trltrips" type="detail">

 <content>

 Recorded Trips

 <p>This field displays the list of trips recorded in this trip log.</p>

 </content>

 </explanation>

 …

</explanations>

 Developing Fabasoft Folio Cloud Apps 125

Figure 50: Displaying context-sensitive help

6.10 Advanced stuff

In this chapter, we will discuss some of the more advanced stuff, such as the integration of web services,
and provide a brief overview of other APIs you can use in the context of your Cloud App.

6.10.1 Creating a web service

Creating an SOAP web service is easy! All you need to do is define and implement the web service
methods, and then define a web service definition where you reference the web service methods that you
want to expose as a web service.

Note: Any use case can be exposed as a web service method. You just need to make sure that it is

implemented on object class COOSYSTEM@1.1:User. As a convention, all web service methods should be

prefixed with SOAP.

In our example, we define three web service methods for creating, updating and deleting logbooks in a

new Fabasoft app.ducx use case file named webservices.ducx-uc. For the sake of brevity, we will not

elaborate on the actual implementation details.

We define a web service definition in the instances.ducx-om file, where we reference the use cases we

want to expose as web methods of the web service. In the web service definition, we can also assign the

external names of the web service methods (e.g. CreateLogbook, UpdateLogbook and

DeleteLogbook).

Example

webservices.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 usecase SOAPCreateLogBook(string name, string vehicleid, retval Logbook logbook) {

 variant User {

 impl = expression {

 126 Developing Fabasoft Folio Cloud Apps

 if (name != null && vehicleid != null) {

 Logbook logbook = #Logbook.ObjectCreate();

 logbook.objname = name;

 logbook.logvehicleid = vehicleid;

 logbook.ShareObject(null, null, #objchildren, cooroot);

 }

 else {

 throw #ErrMissingInformation;

 }

 }

 }

 }

 usecase SOAPUpdateLogBook(Logbook logbook, optional string name,

 optional string vehicleid) {

 variant User {

 impl = expression {

 if (logbook != null) {

 logbook.ObjectLock(true, true);

 if (logbook.objname != name) {

 logbook.objname = name;

 }

 if (logbook.logvehicleid != vehicleid) {

 logbook.logvehicleid = vehicleid;

 }

 }

 else {

 throw #ErrMissingInformation;

 }

 }

 }

 }

 usecase SOAPDeleteLogBook(Logbook logbook) {

 variant User {

 impl = expression {

 if (logbook != null) {

 logbook.ObjectDelete();

 }

 else {

 throw #ErrMissingInformation;

 }

 }

 }

 }

}

instances.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 import FSCOWS@1.1001;

 import FSCGOOGLEVISUALS@1.1001;

 …

 instance WebServiceDefinition WebService {

 webserviceactions<webserviceoperation, webserviceaction> = {

 {"CreateLogBook", SOAPCreateLogBook},

 {"UpdateLogBook", SOAPUpdateLogBook},

 {"DeleteLogBook", SOAPDeleteLogBook}

 }

 }

}

errors.ducx-rs
resources FSCLOGBOOK@111.100

{

 Developing Fabasoft Folio Cloud Apps 127

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 …

 errormsg ErrMissingInformation;

}

mlnames.lang
…

ErrMissingInformation.errtext You did not provide all the required data.

Using your Cloud App VDE, you can generate a web service description language (WSDL) document for
web services and web methods.

A special URL allows you to retrieve the WSDL document for a web service definition in your Cloud App
VDE:

https://folio.fabasoft.com/dev<X>/vm<Y>/folio/fscdav/wsdl?WEBSVC=<web service

definition>

The WEBSVC URL parameter is used to reference the web service definition. You can either specify the

fully qualified reference or the address of the web service definition. If you specify the fully qualified

reference, you must replace special characters (@, colons and dots) with underscores.

The following example URL generates the WSDL document for our web service definition with the

reference FSCLOGBOOK@111.100:WebService:

https://folio.fabasoft.com/dev2/vm23/folio/fscdav/wsdl?WEBSVC=FSCLOGBOOK_111_1

00_WebService

Figure 51 shows part of the WSDL document generated for our web service.

Figure 51: WSDL output generated for the web service

Note: The URLs mentioned before may only be used for writing web service consumers that connect to
your Cloud App VDE for testing purposes. Once your Cloud App has been deployed into the Fabasoft Folio
Cloud production system, use the following URL to reach out to your web service definition from a web
service consumer:

https://folio.fabasoft.com/folio/fscdav/wsdl?WEBSVC=<web service definition>

 128 Developing Fabasoft Folio Cloud Apps

Refer to [Faba11f] for an introduction on how to create a web service consumer using either Eclipse, the
Axis2 code generator and Java; Microsoft Visual Studio and C# or Eclipse; or Fabasoft app.ducx and
expression language.

6.10.2 Other supported APIs

Fabasoft Folio Cloud supports a plethora of open standard APIs such as WebDAV, CalDAV (see [IETF07]
and [Faba11g]) and CMIS (see [OASI10] and [Faba11h]) to make it as simple as possible for you to
integrate or consume virtually any type of external resource within your Cloud App.

Note: The software component FSCOWS@1.1001 contains useful actions for invoking SOAP web service

methods (CallSoapXML, CallSoapXMLEx) as well as for sending generic HTTP requests

(SendHttpRequest).

Elaborating on these technologies and APIs ventures beyond the scope of this book. For further
information refer to the mentioned white papers and the resources listed in the chapter “Getting help, code
samples and support” on page 151.

6.11 Tracing and debugging

Sometimes things just don‟t work out at the very first shot. That‟s why we‟ve included some nifty features
that allow you to add trace messages and debug through your code so that you can easily and efficiently
track down any runtime issues that might arise during development.

6.11.1 Tracing in Fabasoft app.ducx expression language

The built-in tracing functionality of Fabasoft app.ducx allows you to produce extensive traces of your use
case implementations.

The trace output contains detailed information about all use cases invoked by your use case
implementations, along with the parameter values passed to and returned by the invoked use cases to
allow you to get a complete picture of the call stack.

Using Fabasoft app.ducx expression language, you can use the %%TRACE directive to write custom trace

messages to the Fabasoft app.ducx Tracer.

The %%TRACE directive can also be used to trace special objects like cootx to output all transaction

variables defined for a transaction or coometh to output all set parameters within the implementation of a

method.

Values traced using the %%TRACE directive are only written to the Fabasoft app.ducx Tracer if trace mode

is enabled for your Cloud App in the project preferences. Your trace messages, therefore, don‟t have a
performance impact when tracing is deactivated.

To enable tracing, select your Cloud App project in Project Explorer, open the context menu and select
“Properties”. Open the “Fabasoft app.ducx” page, select Enable tracing and click “OK” (see Figure 24 on
page 49).

You can view the trace output of the Fabasoft app.ducx Tracer in the “Console” view of Eclipse. To activate
the “Console” view select “Window” > “Show View” > “Other”, then select “Console” from the “General”
branch and click “OK”.

Before you can see the trace output in the “Console” view, you have to start a tracing session. To start a
tracing session, click the “Start Tracing Session” button in the button bar of the “Console” view (see Figure
52). While the tracing session is active, all trace output is retrieved from the Cloud App VDE and logged in
the “Console” view of Eclipse. When you‟re done, click the “Stop Tracing Session” button to stop the
tracing session.

 Developing Fabasoft Folio Cloud Apps 129

Figure 52: Viewing the trace output of the Fabasoft app.ducx Tracer in Eclipse

Alternatively, point your browser to the Cloud App VDE self-service portal (see chapter “Working with the
Cloud App VDE” on page 35) and select “View Trace Output” to view the trace output on your Cloud App
VDE.

You can also access the trace output using the following URL:

https://folio.fabasoft.com/dev<X>/vm<Y>/selfservice/trace.php

By default, the last 200 lines of trace output are displayed. Using the lines parameter you can define the

number of lines of trace output you want to see. The maximum number of lines is 10,000 (e.g.

https://folio.fabasoft.com/dev2/vm23/selfservice/trace.php?lines=1000).

The following example demonstrates how to use trace directives in Fabasoft app.ducx expression code,
and the resulting trace output produced is depicted in Figure 53.

Example

usecases.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 menu usecase RecordTripWizard on selected or container {

 symbol = SymbolRecordTrip;

 variant TripLog {

 impl = application {

 expression {

 // Custom trace message

 %%TRACE "RecordTripWizard invoked...";

 // Write the contents of the "cooobj" variable to the tracer

 130 Developing Fabasoft Folio Cloud Apps

 %%TRACE("Trip Log", cooobj);

 if (cooobj.trlstate == TLS_OPEN) {

 cooobj.InitTrip();

 ->DialogRecordTrip;

 }

 else {

 throw coort.SetError(

 #ErrTripLogClosed,

 #ErrTripLogClosed.Print(null, cooobj.objname));

 }

 }

 …

 }

 }

 }

}

Figure 53: Viewing the trace output of the Fabasoft app.ducx Tracer in the self-service portal

For detailed information on tracing refer to [Faba11a].

6.11.2 Debugging your Cloud App

The Fabasoft app.ducx debugger allows you to include breakpoints in your code and step through your use
case implementations from within the Eclipse IDE.

You can set a breakpoint by double clicking in the column just in front of your app.ducx source code or by

using the %%debugger directive in your expression code.

Refer to [Faba11a] to learn how to configure and activate the Fabasoft app.ducx debugger.

 132 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 133

7 Testing your Cloud App

We all know that testing is important. Today‟s test-driven development methodologies even require us to
write our tests as we go rather than at the end of the process.

Still, for most of us developer folks coding is much more fun, so we usually tend to focus on the part that‟s
more fun and procrastinate when it comes to testing.

Well, we‟ve got bad news for you: If you want to see your Cloud App going live anytime soon you have to
embrace the idea of writing tests whenever you add or change something in your code.

Testing takes time. Don‟t forget to allocate a fair amount of time to designing, writing and updating robust
tests also taking into account the corner cases. It‟s not in vain though, because in Fabasoft Folio Cloud
quality pays dividends.

Why are we so strict when it comes to testing?

Because creating and continuously running a battery of automated tests is the only way you can keep
huge amounts of existing code from breaking as you integrate new code.

Every Cloud App contributes new code into Fabasoft Folio Cloud, and the only way to maintain our
standard of exceptional code quality is to enforce to our processes that uphold quality above all.

So what does this mean for you as a Cloud App developer?

Basically, it means that you have to produce the following deliverables in addition to your actual Cloud
App:

 Unit tests for all of your use cases that are not implemented as virtual applications

 Fabasoft app.test tests for all of your Fabasoft app.ducx expression code that cannot be covered by
unit tests

 A combined code coverage ratio of 100 %

7.1 Creating and running unit tests

Unit tests are an integral and essential part of every modern software development methodology and
provide a quick way to boost your code coverage. In this chapter you will learn how easy it is to define and
execute unit tests for your Cloud App.

7.1.1 Creating a unit test

Unit tests are part of your Fabasoft app.ducx project and must be defined in a Fabasoft app.ducx object
model file.

We‟re going to define the unit tests for your Cloud App in a file named unittests.ducx-om. So go

ahead and create a new Fabasoft app.ducx object model file with the name unittests.ducx-om and

add a software component reference to the FSCDUCXUNIT@1.1001 software component. Then add an

import declaration for software component FSCDUCXUNIT@1.1001.

For each unit test, you have to define an instance of FSCDUCXUNIT@1.1001:UnitTest as illustrated by

the example presented later on.

For the sake of brevity, we will only include a single unit test in this book. However, you can obtain the full
source code for our Cloud App (including all the unit tests) from the public Subversion repository (see
chapter “Retrieving code samples from the public Subversion repository” on page 151).

As a rule of thumb, you should define one unit test for each and every use case in your project that is not
implemented as a virtual application. Virtual applications and all the other stuff that needs a GUI must be
covered by Fabasoft app.test tests.

 134 Developing Fabasoft Folio Cloud Apps

Generally, it‟s a good idea to have one unit test per use case, but you may also combine logically related
use cases into a single unit test. This is exactly what we‟ll be doing in our example, where we will cover the

RecordTrip use case and the InitTrip use case with the same unit test.

A unit test is comprised of three Fabasoft app.ducx expressions:

 The localsetup expression allows you to define a setup expression for creating and initializing the

test containers for your unit test.

 In the test expression, cover all the possible test cases for the use case to be tested by your unit test.

This is the “main body” of the unit test.

 The localteardown expression allows you to define a cleanup expression for deleting the test

containers used by your unit test.

Keep the following important things in mind when writing a unit test:

 Add assertions to your expression code using the %%ASSERT directive to check if your test conditions

are fulfilled. If at runtime a condition is not met, the assertion yields false and the unit test fails.

 Make sure that every branch of your use case implementation is covered, also the error handlers. You
can use try-catch blocks to raise errors and test if they are handled correctly.

 Don‟t forget to cover the corner cases and also try to anticipate obscure scenarios.

 Clean up after yourself and delete all of the test objects created by your unit test.

The following example shows how to define a unit test.

Example

unittests.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 import FSCDUCXUNIT@1.1001;

 instance UnitTest UnitTestRecordTrip {

 localsetup = expression {

 //--

 // Create and initialize test data

 //--

 Logbook logbook = #Logbook.ObjectCreate();

 logbook.objname = "My Logbook";

 logbook.logvehicleid = "AG76282";

 SelectionContext selctx = {

 selview = #logtriplogs,

 selcontainer = :>logbook

 };

 #TV.TV_SELECTIONCONTEXT = selctx;

 #TV.TV_SELECTIONCONTAINER = logbook;

 TripLog triplog = #TripLog.ObjectCreate();

 triplog.ShareObject(null, null, #logtriplogs, logbook);

 cootx.Commit();

 %%ASSERT(logbook != null);

 %%ASSERT(triplog != null);

 %%ASSERT(triplog in logbook.logtriplogs);

 %%ASSERT(triplog.objaclref == logbook);

 %%ASSERT(triplog.objaclobj == null);

 }

 test = expression {

 //--

 // Test the "RecordTrip" and "InitTrip" use cases

 //--

 Trip trip = null;

 try {

 Developing Fabasoft Folio Cloud Apps 135

 triplog.RecordTrip(trip);

 %%FAIL;

 }

 catch (#ErrIncompleteTripInfo) {

 }

 triplog.InitTrip();

 %%ASSERT(triplog.trlnewtrip != null);

 %%ASSERT(triplog.trlnewtrip.trpstartmileage == null);

 %%ASSERT(triplog.trlnewtrip.trpdriver == coouser);

 %%ASSERT(triplog.trlnewtrip.trptype == #TermBusiness);

 triplog.trlnewtrip.trpdepartureat = coonow - 9*60*60;

 triplog.trlnewtrip.trparrivalat = coonow - 6*60*60;

 triplog.trlnewtrip.trpdepartureplace = "New Haven, CT";

 triplog.trlnewtrip.trpdestinationplace = "Boston, MA";

 triplog.trlnewtrip.trpstartmileage = 10000;

 triplog.trlnewtrip.trpendmileage = 10150;

 triplog.trlnewtrip.trppurpose = "Customer Visit";

 triplog.RecordTrip(triplog.trlnewtrip);

 cootx.Commit();

 %%ASSERT(count(triplog.trltrips) == 1);

 %%ASSERT(triplog.trltrips[0].trpmileage == 150);

 %%ASSERT(triplog.trltrips[0].trpduration == 3*60*60);

 %%ASSERT(triplog.trltrips[0].trpdriver == null);

 %%ASSERT(triplog.trltrips[0].trpdrivername == coouser.objname);

 %%ASSERT(triplog.trlnewtrip == null);

 triplog.InitTrip();

 %%ASSERT(triplog.trlnewtrip != null);

 %%ASSERT(triplog.trlnewtrip.trpstartmileage == 10150);

 %%ASSERT(triplog.trlnewtrip.trpdriver == coouser);

 %%ASSERT(triplog.trlnewtrip.trptype == #TermBusiness);

 triplog.trlnewtrip.trpdepartureat = coonow - 7*60*60;

 triplog.trlnewtrip.trparrivalat = coonow - 5*60*60;

 triplog.trlnewtrip.trpdepartureplace = "Boston, MA";

 triplog.trlnewtrip.trpdestinationplace = "Salem, MA";

 triplog.trlnewtrip.trpendmileage = 10170;

 triplog.trlnewtrip.trppurpose = "Customer Visit";

 try {

 triplog.RecordTrip(triplog.trlnewtrip);

 %%FAIL;

 }

 catch (#ErrDepartureBeforeLastArrival) {

 }

 triplog.trlnewtrip.trpdepartureat = coonow - 4*60*60;

 triplog.trlnewtrip.trparrivalat = coonow - 5*60*60;

 try {

 triplog.RecordTrip(triplog.trlnewtrip);

 %%FAIL;

 }

 catch (#ErrArrivalBeforeDeparture) {

 }

 triplog.trlnewtrip.trpdepartureat = coonow - 4*60*60;

 triplog.trlnewtrip.trparrivalat = coonow - 3*60*60;

 triplog.trlnewtrip.trpstartmileage = 9999;

 triplog.trlnewtrip.trpendmileage = 10170;

 try {

 triplog.RecordTrip(triplog.trlnewtrip);

 %%FAIL;

 }

 catch (#ErrStartMileageLastEndMileage) {

 }

 triplog.trlnewtrip.trpstartmileage = 10175;

 triplog.trlnewtrip.trpendmileage = 10170;

 try {

 triplog.RecordTrip(triplog.trlnewtrip);

 136 Developing Fabasoft Folio Cloud Apps

 %%FAIL;

 }

 catch (#ErrStartMileageEndMileage) {

 }

 triplog.trlnewtrip.trpstartmileage = 10150;

 triplog.trlnewtrip.trpendmileage = 10170;

 triplog.RecordTrip(triplog.trlnewtrip);

 cootx.Commit();

 %%ASSERT(count(triplog.trltrips) == 2);

 %%ASSERT(triplog.trlnewtrip == null);

 }

 localteardown = expression {

 //--

 // Clean up test data

 //--

 logbook.ObjectDelete();

 cootx.Commit();

 }

 }

}

7.1.2 Running a unit test

Save and upload your changes into your Cloud App VDE (see chapter “Uploading your Cloud App into the
Cloud Sandbox” on page 79) and point your browser to the Cloud Sandbox. Then log in using the
“developer” account.

From within an administration tool, issue a search for the instance of object class “Unit Test” with the

reference UnitTestRecordTrip and share it into the administration tool by selecting it in the list of

search results and clicking “Next”.

Select “Run Test” from the context menu of the unit test to execute it. The dialog box depicted in Figure 54
shows the result of the execution.

Refer to [Faba11a] for further information on how to define and run unit tests.

 Developing Fabasoft Folio Cloud Apps 137

Figure 54: Executing a unit test

7.1.3 Creating and running a unit test group

If you have multiple unit tests for your Cloud App, you can combine them into a unit test group. This allows
you to select “Run Test” from the context menu of the unit test group to execute the whole battery of unit
tests that are part of the group.

The following example shows how to define a unit test group.

Example

unittests.ducx-om
objmodel FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import COODESK@1.1;

 import FSCDUCXUNIT@1.1001;

 instance UnitTest UnitTestInitTrip {

 …

 }

 instance UnitTest UnitTestRecordTrip {

 …

 }

 instance UnitTestGroup UnitTestGroupLogbook {

 tests = {

 UnitTestInitTrip,

 UnitTestRecordTrip

 }

 }

}

 138 Developing Fabasoft Folio Cloud Apps

7.2 Creating and running Fabasoft app.test tests

Fabasoft app.test extends the testing possibilities of unit tests and enables you to conduct GUI testing. To
test your Cloud App, Fabasoft app.test operates just like real human users would do when interacting with
it.

While your unit tests ensure that your use cases can be executed with different input parameters and
various settings, they don‟t allow you to interact with the GUI components of your Cloud App. This is where
Fabasoft app.test takes over as it complements your unit tests with automated test sequences imitating a
human user working with your Cloud App.

In addition, Fabasoft app.test provides a range of customizable reports tailored to your needs.

7.2.1 Installing Fabasoft app.test Studio primo

Before you can start creating your first test you need to download and install Fabasoft app.test Studio

primo, which is available free of charge at http://www.apptest.com/apptest/downloads.

Refer to the Fabasoft app.test online help (available at http://help.apptest.com) and [Faba11b] for

in depth instructions on how to install and configure Fabasoft app.test.

7.2.2 Importing the Fabasoft app.test project

In the next step, you have to import the skeleton project that was automatically created for your Cloud App
from the Subversion repository.

In contrast to Fabasoft app.ducx, Fabasoft app.test does not allow you to import a project straight from a
Subversion repository. Therefore, you have to check out the Fabasoft app.test project for your Cloud App
into a folder using a Subversion client.

If you are using TortoiseSVN, select “SVN Checkout” from the context menu of Microsoft Windows
Explorer to open the dialog box depicted in Figure 55.

In the URL of repository field enter the URL of your Cloud App in the Subversion repository and add the

test folder to point it to the Fabasoft app.test project root. For our example, the full URL to the Fabasoft

app.test project is:

https://folio.fabasoft.com/svn/apps/FCB798DAF91D3911AB30860F534FADBA/trunk/FSC

LOGBOOK/test

Note: Refer to the chapter “Creating the development project” on page 42 for further information on how to
retrieve the Subversion URL of your Cloud App.

 Developing Fabasoft Folio Cloud Apps 139

Figure 55: Checking out the Fabasoft app.test project

After checking out the project, start Fabasoft app.test and point the workspace folder to the folder where
you checked out your project. Then select “File” > “Import” to bring up the dialog box depicted in Figure 56.
In the “Import” dialog box, select “Existing Fabasoft DUCXtest or Fabasoft app.test Projects into
Workspace” from the “Fabasoft app.test” branch in the Select an import source field and click “Next”.

Figure 56: Importing an existing Fabasoft app.test project

 140 Developing Fabasoft Folio Cloud Apps

Figure 57: Selecting the Fabasoft app.test project to import

In the “Import Projects” dialog box shown in Figure 57, select the folder to where you checked out your
Fabasoft app.test project in the Select root directory field and click “Finish” to finish the import.

7.2.3 Importing the common test sequences and use cases

After importing the skeleton project for your Cloud App into Fabasoft app.test, follow the instructions in
[Faba11c] to import the common test sequences and use cases into your project.

This library of predefined test sequences and use cases tailored to Fabasoft Folio Cloud contains reusable
test sequences that you can call in your tests so you don‟t need to create sequences for common use
cases (such as the login of a test user) by yourself.

7.2.4 Creating a test

Let‟s create our first Fabasoft app.test test!

To get started, it would be a good idea to watch the video tutorials available at

http://www.apptest.com/community/get-started. These video tutorials are definitely the easiest

and most convenient way to get you up to speed with Fabasoft app.test.

 Developing Fabasoft Folio Cloud Apps 141

In a nutshell, the general structure of the Fabasoft app.test project for your Cloud App is as follows:

 The project should contain a single test file invoking all of the sequences belonging to it.

 Break down your test into as many logical sequences as you wish. Sequences should not contain any
executions (e.g. “clicks”) though.

 Each sequence of your test may contain multiple use cases that are responsible for carrying out the
actual “work” (e.g. creating a logbook and filling out its properties).

For the sake of brevity, we will only focus on the absolute basics of creating a test. For further information

refer to the Fabasoft app.test online help (available at http://help.apptest.com) and [Faba11b].

First of all, we need to create a test file. To create a test file, select “File” > “New” > “Test” and enter

logbook.ducx-test in the File name field of the dialog box that is opened and click “Finish” (see Figure

58).

Figure 58: Creating a new test

 142 Developing Fabasoft Folio Cloud Apps

Figure 59: Editing the source code of a test

After creating the file, open the source code of the test by selecting the “Source” view of the

logbook.ducx-test file, copy the code from the following example into the source code and save it.

The code is responsible for doing some initialization work before calling the createlogbook.ducx-seq

test sequence, which we‟re going to create in a subsequent step. Part of the initialization work is to acquire
a license for your Cloud App for the test user.

Note: In the cloudapp parameter you have to provide the exact name of your Cloud App as it appears in

the GUI (i.e. the name you defined in the mlnames.lang file).

Example

logbook.ducx-test
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<Test name="logbook">

 <!-- === -->

 <!-- Global environment parameters -->

 <!-- === -->

 <Sequence name="Override Defaults">

 <Set parameter="testlanguage" value="LANG_ENGLISH" />

 <Set parameter="reducedsettings" value="false" />

 </Sequence>

 <Sequence filename="PUBLIC/COMMON/PREREQ/Sequences/COMMON_PREREQ_ENVIRONMENT" />

 <Sequence name="Global Parameters">

 <!-- Define the name of your Cloud App in the "cloudapp" parameter -->

 <Set parameter="cloudapp" value="Driver's Logbook" />

 <Set parameter="cloudappuser" value="{~userid1_email~}" />

 <Set parameter="tc" value="Shared Logbooks {~testid~}" />

 </Sequence>

 <!-- === -->

 <!-- License Cloud App for Wanda Carney (as administrator) -->

 <!-- === -->

 <Sequence name="Login Parameters">

 <Set parameter="testuser" value="{~useradminid0~}" />

 Developing Fabasoft Folio Cloud Apps 143

 <Set parameter="testuser_pwd" value="{~useradminid0_pwd~}" />

 <Set parameter="testuser_email" value="{~useradminid0_email~}" />

 <Set parameter="appname" value="{~cloudapp~}" />

 <Set parameter="contactemail" value="{~cloudappuser~}" />

 </Sequence>

 <Sequence filename="PUBLIC/COMMON/APP/Sequences/COMMON_APP_LicenseAppForUser"

 username="{~testuser~}" password="{~testuser_pwd~}" />

 <!-- === -->

 <!-- Create a new logbook as Wanda Carney -->

 <!-- === -->

 <Sequence name="Login Parameters">

 <Set parameter="testuser" value="{~userid1~}" />

 <Set parameter="testuser_pwd" value="{~userid1_pwd~}" />

 <Set parameter="testuser_email" value="{~userid1_email~}" />

 </Sequence>

 <Sequence filename="Sequences/createlogbook"

 username="{~testuser~}" password="{~testuser_pwd~}"/>

 <!-- === -->

 <!-- Clean up as Wanda Carney -->

 <!-- === -->

 <Sequence name="Login Parameters">

 <Set parameter="testuser" value="{~userid1~}" />

 <Set parameter="testuser_pwd" value="{~userid1_pwd~}" />

 <Set parameter="testuser_email" value="{~userid1_email~}" />

 </Sequence>

 <Sequence filename="Sequences/cleanup"

 username="{~testuser~}" password="{~testuser_pwd~}" />

</Test>

Now create a sequence file by selecting “File” > “New” > “Sequence” and enter createlogbook.ducx-

seq in the File name field of the dialog box and click “Finish”. After that, copy the source code from the

following example into the createlogbook.ducx-seq file.

Example

createlogbook.ducx-seq
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<Sequence name="logbook">

 <!-- Login -->

 <Set parameter="portal" value="{~deskportal~}" />

 <UseCase filename="PUBLIC/COMMON/INITIALIZE/UseCases/COMMON_INITIALIZE_Login" />

 <!-- Activate Cloud App -->

 <Set parameter="appname" value="{~cloudapp~}" />

 <Set parameter="appactivate" value="true" />

 <UseCase filename="PUBLIC/COMMON/APP/UseCases/COMMON_APP_ActivateAppForUser" />

 <!-- Create team room -->

 <Set parameter="portal" value="{~deskportal~}" />

 <Set parameter="tc" value="{~tc~}" />

 <UseCase filename="PUBLIC/COMMON/TESTCONTAINER/UseCases/COMMON_TESTCONTAINER_

 CreateTC_Teamroom" />

 <!-- Invoke the use case for creating a logbook in the team room -->

 <Set parameter="portal" value="{~deskportal~}" />

 <Set parameter="tc" value="{~tc~}" />

 <UseCase filename="UseCases/createlogbook" />

</Sequence>

In the next step, create a use case file by selecting “File” > “New” > “Use Case” and enter

createlogbook.ducx-case in the File name field of the dialog box and click “Finish”. Then click the

“Start/Stop Recorder” button in the “Outline” view to bring up the dialog box depicted in Figure 60.

 144 Developing Fabasoft Folio Cloud Apps

Figure 60: Starting the Fabasoft app.test recorder

Figure 61: Working with the Fabasoft app.test recorder

 Developing Fabasoft Folio Cloud Apps 145

In the Address field on the “Run” page, enter the URL of your Cloud Sandbox. You can also use the

{~webserver~} variable when defining the URL, as illustrated by the example.

On the Login page, enter the user name and password of the user you want to use for creating your test.

For our example, we enter carney0001 in the {~username~} field and the password we defined for the

test users in the {~password~} field (see chapter “Working with the Cloud App VDE” on page 35). Then
click “OK” to start the recorder.

In the Fabasoft app.test recorder depicted in Figure 61, click the “Start Recording”‟ button to start recording
your interactions with the Cloud Sandbox. Once in recording mode, every mouse click and every push of a
button is recorded and transformed into the corresponding statement, which is appended to the

createlogbook.ducx-case file until you stop recording by clicking “Stop Recording”.

In order to keep the example concise, we‟ll just carry out a few steps:

 Create a new team room and enter the team room by double-clicking on it. In our

createlogbook.ducx-seq sequence file, we‟re using a common use case for creating a new team

room. Therefore, we don‟t need to record the steps for creating the team room.

 Click the “Start Recording” button to start recording the executed steps.

 Create a new logbook named “Team Logbook” inside of the team room.

 Enter “TEAM1” in the Vehicle ID property of the logbook.

 Click “Next” to save and close the logbook.

When you‟re done, click the “Stop Recording” button and switch to the source view of the

createlogbook.ducx-case file, which should look like the following example.

Example

createlogbook.ducx-case
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<UseCase name="createlogbook">

 <Execution action="Click" location="PAGES.Main.Contents.BUTTONBAR.New"/>

 <Execution action="Click" location="PAGES.Main.What do you want to create?.All"/>

 <Execution action="Click" location="PAGES.Main.What do you want to create?[0].

 Logbook"/>

 <Execution action="Click" location="PAGES.Main.BUTTONBAR.Next"/>

 <Execution action="Set" location="PAGES.Main.Name" value="Team Logbook"/>

 <Execution action="Set" location="PAGES.Main.Vehicle ID" value="TEAM1"/>

 <Execution action="Click" location="PAGES.Main.BUTTONBAR.Next"/>

</UseCase>

In the next step, we‟ll have to do some editing to make our use case compatible with the requirements of
the Continuous Integration (CI) environment (see chapter “Continuous integration environment” on page
156) and to give it the finishing touches.

The main aspects of creating robust test use cases are discussed in great detail in [Faba11c], so we‟ll limit
ourselves to the most crucial things to keep in mind:

 Use variables for any values you‟re planning to use repeatedly. Most importantly, use variables for the

names of your test containers (e.g. the team room and the logbook) and include the testid variable

in the names.

 At the end of the use case, return to the starting point. In our example this means going back to the
“Home” screen.

 146 Developing Fabasoft Folio Cloud Apps

The following example shows the source code of the createlogbook.ducx-case file after incorporating

all of the mentioned points.

Example

createlogbook.ducx-case
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<UseCase name="createlogbook">

 <!-- === -->

 <!-- Parameters -->

 <!-- === -->

 <Set parameter="tmpportal" value="{~portal~}" />

 <Set parameter="tmptc" value="{~tc~}" />

 <Set parameter="tmplogbook value="Team Logbook {~testid~}" />

 <!-- Set defaults-->

 <Set parameter="tmpportal" value="{~deskportal~}"

 if='"{~tmpportal~}"=="NULL" || "{~tmpportal~}"==""' />

 <!-- === -->

 <!-- Create logbook within team room -->

 <!-- === -->

 <Execution action="Click" location="PORTALS.{~tmpportal~}" />

 <Execution action="Click" location="BREADCRUMBS[1]"/>

 <!-- Enter team room -->

 <Set parameter="tmptcexists" location='PAGES.Main.CONTROLS.Contents["{~tmptc~}"]'

 eval="Exists"/>

 <Validation ok='"{~tmptcexists~}"=="true"' />

 <Execution action="Doubleclick" location='PAGES.Main.CONTROLS.

 Contents["{~tmptc~}"]' />

 <!-- Create logbook -->

 <Execution action="Click" location="PAGES.Main.Contents.BUTTONBAR.New"/>

 <Execution action="Click" location="PAGES.Main.What do you want to create?.All"/>

 <Execution action="Click" location="PAGES.Main.What do you want to create?[0].

 Logbook"/>

 <Execution action="Click" location="PAGES.Main.BUTTONBAR.Next"/>

 <Execution action="Set" location="PAGES.Main.Name" value="{~tmplogbook~}"/>

 <Execution action="Set" location="PAGES.Main.Vehicle ID" value="TEAM1"/>

 <Execution action="Click" location="PAGES.Main.BUTTONBAR.Next"/>

 <!-- Return to "Home" screen -->

 <Execution action="Click" location="BREADCRUMBS[1]"/>

</UseCase>

Now that we‟ve got you started, it‟s up to you to improve your test and enrich it with additional use cases to
cover all the functionality of your Cloud App not already covered by unit tests. Of course, it doesn‟t hurt if
your Fabasoft app.test tests also cover parts of your code that are already covered by unit tests.

Don‟t forget to clean up when you‟re done (i.e. create a sequence file named cleanup.ducx-seq and

delete all the objects created by your use cases in a cleanup use case) to leave the test environment in a
clean state.

The examples presented in this chapter should have given you a rough idea of how to create test use
cases. For detailed information and a full language reference refer to the Fabasoft app.test online help

(http://help.apptest.com), [Faba11b] and [Faba11c].

Also, the complete set of tests for our sample is available to you in the public Subversion repository of

Fabasoft (https://folio.fabasoft.com/svn/public). For further information refer to the chapter

“Retrieving code samples from the public Subversion repository” on page 151.

 Developing Fabasoft Folio Cloud Apps 147

7.2.5 Running a test

To run your test, select the logbook.ducx-test file in Project Explorer of Fabasoft app.test, open the

context menu and select “Run” to bring up the dialog box shown in Figure 62. Then click “OK” to start the
test.

Figure 62: Running a test

Don‟t close the window that is opened as this will abort the execution of your test. At the end of the test, a
summary will be displayed in the “Test State” view.

For further information on running a test refer to the Fabasoft app.test online help

(http://help.apptest.com), [Faba11b] and [Faba11c].

 148 Developing Fabasoft Folio Cloud Apps

7.3 Checking and improving the coverage of your tests

As you already know, one of your main objectives is to reach 100 % code coverage. But how can you find
out which parts of your code are already covered by your tests?

Well, Fabasoft app.ducx includes a built-in coverage plug-in that makes it a breeze to determine the
coverage ratio for your Cloud App.

Did you already notice the “Coverage” view displayed by default in the right bottom panel of Eclipse? If it‟s
not open for some reason, select “Window” > “Show View” > “Other”, select “Coverage” from the “Fabasoft
app.ducx Coverage” branch and click “OK”.

These are the steps to record coverage information:

 To start a coverage session, click the “Start Coverage Session” button (to the left of the “Hide/Show
Coverage” button).

 The web browser is launched and you are prompted to log in to your Cloud Sandbox.

 During a coverage session, all of your actions and clicks (and also the actions carried out by unit tests
and Fabasoft app.test tests) are recorded by the coverage plug-in.

 When you stop the coverage session by clicking the “Stop Coverage Session” button, the recorded
information is downloaded to Eclipse and you can drill down in your code to find the parts that have not
been covered by your tests yet.

Coverage only applies to Fabasoft app.ducx expression code. Lines covered by a test are displayed in
green whereas lines that have not been covered are displayed in red. Also, the number of times a line was
visited during a coverage session is displayed.

Note: During a coverage session, every interaction with your Cloud Sandbox is recorded. When you run a
Fabasoft app.test test against your Cloud Sandbox while a coverage session is active, the actions carried
out by the test are also recorded.

Remember that coverage information is not user-specific. Every action carried out by any user in your
Cloud Sandbox is taken into account for the coverage ratio.

To achieve a complete picture of the combined coverage ratio for your Cloud App, we suggest the
following approach:

 Start a new coverage session by clicking the “Start Coverage Session” button.

 Log in using the “developer” user account.

 From within an administration tool, execute all of your unit tests.

 Switch to Fabasoft app.test Studio primo and run your test.

 Wait until your Fabasoft app.test test finishes.

 Click the “Stop Coverage Session” button.

 Examine the coverage information displayed in the “Coverage” view (see Figure 63).

 Developing Fabasoft Folio Cloud Apps 149

Figure 63: Checking the coverage

 150 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 151

8 Getting help, code samples and support

Got stuck somewhere along the road?

No need to worry!

For Cloud App developers, getting help is easy!

8.1 Help and documentation

The following resources should be your first resort when you need help:

Fabasoft Folio Cloud:

 Online help

 Quick tours: http://www.foliocloud.com/quick-tour

 Frequently asked questions: http://www.foliocloud.com/faq

 Community web site: http://www.foliocloud.com/community

Fabasoft app.ducx:

 Online help

 White papers [Faba11a], [Faba11e], [Faba11i]

Fabasoft app.test:

 Online help: http://help.apptest.com

 White papers [Faba11b], [Faba11c]

Fabasoft app.telemetry:

 Online help: http://www.apptelemetry.com/documentation

In addition, the “Fabasoft Folio Cloud” team room contains additional information about the release cycle,
new features of Fabasoft Folio Cloud as well as links to additional documentation and other useful
materials. Refer to the chapter “Fabasoft Folio Cloud update cycle” on page 26 for more information on the
“Fabasoft Folio Cloud” team room.

Finally, the Fabasoft Folio Cloud developer web site at http://developer.foliocloud.com is

another great resource for Cloud App developers, including a dedicated developer forum.

8.2 Retrieving code samples from the public Subversion repository

More often than not, a nifty code snippet tells more than a thousand words. That‟s why we host a public
Subversion repository full to the brim with code samples and even the complete source code of full-blown
Cloud Apps.

Using a Subversion client you can access our public Subversion repository with the repository URL

https://folio.fabasoft.com/svn/public. You can log in with your Fabasoft Folio Cloud

credentials.

To import a Cloud App sample project into your Eclipse workspace, select “Import” from the “File” menu of
Eclipse. In the “Import” dialog box, expand the “SVN” branch, select “Project from SVN” and click “Next”
(see Figure 20 on page 46).

In the “Checkout from SVN” dialog box depicted in Figure 21 on page 47, enter the URL

https://folio.fabasoft.com/svn/public and your Fabasoft Folio Cloud credentials in the User

and Password fields of the Authentication box, then click “Browse” to log in to the Subversion repository.

 152 Developing Fabasoft Folio Cloud Apps

In the “Select Resource” dialog box depicted in Figure 22 on page 48, navigate to the Cloud App project
you want to import and select the “dev” branch underneath it. Then click “OK” to return to the “Checkout
from SVN” dialog box and click “Finish” to proceed with the import of your project from Subversion.

8.3 Getting support from Fabasoft and the community

The Fabasoft Folio Cloud developer forum (see http://developer.foliocloud.com) allows you to

get support from fellow Cloud App developers and Fabasoft experts.

For general Fabasoft Folio Cloud issues refer to the Fabasoft Folio Cloud support web site at

http://www.foliocloud.com/support.

8.4 Staying up to date

Things are moving fast in Fabasoft Folio Cloud. Every month, we add tons of new features and
continuously strive to improve existing functionality. Therefore, it‟s crucial for Cloud App developers to stay
up to date.

The “What‟s New” documents published by Fabasoft in the “Fabasoft Folio Cloud” team room (see chapter
“Fabasoft Folio Cloud update cycle” on page 26) after every Fabasoft Folio Cloud update should be your
first resource for getting all the latest information about new features, any changes that might have a
potential effect on your Cloud App and other development-related stuff.

Moreover, the Fabasoft Cloud Developer Conference (CDC) is a great way to learn about new features
and techniques, connect with fellow Cloud App developers and get advice from the Fabasoft Cloud App
development experts.

For further information on the Fabasoft CDC go to http://www.foliocloud.com/cdc.

 154 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 155

9 Releasing your Cloud App

Before your Cloud App is allowed to go live, it must pass a sophisticated release process to ensure it is fit
for use in Fabasoft Folio Cloud.

In this chapter, we describe the release process and how you can submit your Cloud App to Fabasoft for
review.

9.1 About the release process

Figure 64: The Cloud App release process

Upon submitting your Cloud App for review, the release process depicted in Figure 64 is started. It
comprises the following steps:

 Plain CI environment tests: The Fabasoft app.test tests and unit tests for your Cloud App are executed
in the Plain CI environment, which is an environment similar to your Cloud Sandbox.

 Full CI environment tests: If your Cloud App passes the Plain CI environment tests, it is deployed into
the Full CI environment, which is identical to the production environment. Again, your Fabasoft app.test
tests and unit tests are executed, and your Cloud App is checked for potential side effects on other
Cloud Apps.

 Code review: After passing the Full CI environment tests, a manual review of the source code of your
Cloud App is conducted by a Fabasoft reviewer.

If your Cloud App passes the review, it‟s good to go live with the next scheduled update of Fabasoft Folio
Cloud.

For further information about the release process and the deadlines you have to meet for your Cloud App
to be included in the next scheduled Fabasoft Folio Cloud update refer to [Faba11d].

9.2 Submitting your app for review

Make sure to have all your ducks lined up correctly before submitting your Cloud App to Fabasoft, because
the release process might take a couple days to complete and you don‟t want to waste time and miss the
next update window just because of a few missing comments. Therefore, review the list of deliverables in
the chapter “What you need to do to get your Cloud App deployed” on page 29 before continuing.

When you‟re confident that your Cloud App meets all the requirements defined by Fabasoft, log in to
Fabasoft Folio Cloud, select the release object you‟ve created within the development project for your
Cloud App and select “Submit” from the context menu to submit your Cloud App for review (see Figure 65).

Note: Remember to pick a price tier for your Cloud App before submitting it. For further information refer to
the chapter “Reaping the profits” on page 159.

A branch of your source code is automatically created in the Subversion repository for the submitted
release and the release process is kicked off.

 156 Developing Fabasoft Folio Cloud Apps

Figure 65: Submitting your Cloud App for review

9.3 Continuous integration environment tests

The continuous integration environment tests in the Plain CI environment and the Full CI environment are
automatically scheduled and executed.

If your Cloud App passes the integration tests, it will be forwarded to a Fabasoft reviewer for manual
review of the source code.

In case of errors, the review process is aborted and an error report is generated and published in the
release object for the submitted release of your development project.

9.4 Code review

At Fabasoft, take code quality extremely seriously. Therefore, every submitted Cloud App must go through
a thorough manual code review by a specially trained Fabasoft expert.

If any issues are detected during the code review, an issue report is created and made available to you in
the release object for the submitted release.

9.5 Getting feedback

You will be notified via e-mail about the outcome of the release process. Moreover, a detailed report of the
review results is published in the release object for the submitted release (see Figure 66).

 Developing Fabasoft Folio Cloud Apps 157

Figure 66: Results of the release process

If your Cloud App passes the review, it will be included in the next scheduled update of Fabasoft Folio
Cloud.

Note: If you submitted your Cloud App after the submission deadline for the next schedule update, it will
be included in the update after the next scheduled update. For further details refer to [Faba11d].

However, if your Cloud App doesn‟t successfully complete the release process, it will not be deployed into
Fabasoft Folio Cloud. In this case, carefully review the report published in the release object, straighten out
the detected issues and resubmit your Cloud App.

 158 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 159

10 Reaping the profits

Let‟s talk business!

Fabasoft Folio Cloud is based on a revenue sharing model that is simple and transparent: As Cloud App
developer, you get 50 % of the net proceeds of every sold subscription to your Cloud App. Basically, every
sale of a Cloud App subscription generates recurring revenue for you, because users don‟t buy a perpetual
license but a three month or one year subscription to your Cloud App.

In addition, you can charge users for using premium features within your Cloud App or provide services
such as premium support at a fee using so-called Activity Points. Again, you get 50 % of the net proceeds
of every Activity Point spent within the context of your Cloud App.

Be sure to read the fine print in the developer agreement for all the details about the revenue sharing
model and the Activity Points of Fabasoft Folio Cloud

(see http://www.foliocloud.com/developeragreement).

10.1 About price tiers

Fabasoft does not allow you to attach an arbitrary price tag to your Cloud App. Instead, we require you to
pick a predefined price tier from a list of available price tiers provided by Fabasoft.

A price tier defines the price of a Cloud App subscription for a given period of time. More precisely, it
defines the price for a three month subscription and a one year subscription.

For further information about price tiers refer to the Fabasoft Folio Cloud developer agreement

(see http://www.foliocloud.com/developeragreement).

10.2 Defining the stuff related to billing

All the information regarding pricing and billing must be defined on the “Statement” page of your
development project in Fabasoft Folio Cloud (depicted in Figure 67 on page 160):

 If your Cloud App will not be free of charge, enter your bank account details in the properties Account
Holder, IBAN and BIC.

 If you have a tax number, set the Liable to VAT property to “Yes” and enter your tax number in the VAT
ID property.

 If you want to receive your monthly app sales statements by e-mail, set the Send App Statements by
E-Mail property to “Yes”. Otherwise, you will not be notified when a new app sales statement is
available.

 Create a new entry in the Price for App property and enter the reference of your Cloud App in the App

Reference property (i.e. AppFSCLOGBOOK). In the Required Folio Cloud Edition, select the edition of

Fabasoft Folio Cloud you require for your Cloud App and in the Price Tier property select one of the

preconfigured price tiers.

10.3 Activity Points

Activity Points allow you to charge users for using premium features or services (e.g. premium support)
within your Cloud App.

Users can purchase Activity Points in the Fabasoft Folio Cloud App Store and then use their points for
consuming premium features or services within context of Cloud Apps.

For each premium feature or service you want to provide at a charge, you have to define a custom Activity
Point type and assign a price tier to it.

 160 Developing Fabasoft Folio Cloud Apps

The example in this chapter outlines how to define a custom Activity Point type for your Cloud App, which
you can then use to debit points from a user‟s point balance for using a premium feature of your Cloud
App.

For our example, assume that we provide a premium feature in your Cloud App that allows users to have
trip logs validated by an external auditing service.

First, we define a custom Activity Point type named AppPointTripLogValidation in a Fabasoft

app.ducx object model file. Then you have to assign a price tier to your Activity Point type by adding an
entry in the Price for Activity Points property of your development project in Fabasoft Folio Cloud (see
Figure 67).

Figure 67: The “Statement” page of the development project

In the virtual application that implements the premium feature, we invoke the virtual application

FSCFOLIOCLOUDPAYMENT@1.1001:ObjectDebitActivityPoint to check the user‟s point balance

and then deduct a point from their balance.

Example

instances.ducx-om
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 import FSCTERM@1.1001;

 import COOATTREDIT@1.1;

 …

 instance ActivityPoint AppPointTripLogValidation {

 symbol = SymbolAppFSCLOGBOOK;

 acapps = AppFSCLOGBOOK;

 }

}

validation.ducx-uc
usecases FSCLOGBOOK@111.100

{

 import COOSYSTEM@1.1;

 Developing Fabasoft Folio Cloud Apps 161

 import FSCVAPP@1.1001;

 import FSCVENV@1.1001;

 import FSCVIEW@1.1001;

 import FSCFOLIOCLOUDPAYMENT@1.1001;

 menu usecase ValidateTripLogWizard on selected or container {

 variant TripLog {

 impl = application {

 expression {

 integer availablepoints;

 // Check if the user has enough points to proceed. If parameter 3 is set to

 // "false", only a balance check is performed but no points are deducted.

 ->ObjectDebitActivityPoint(#AppPointTripLogValidation, null, false,

 &availablepoints);

 // Proceed only if the user has enough points

 if (availablepoints > 0) {

 boolean dovalidation = false;

 // TODO: Do something (e.g. ask the user if she wants to send this trip log

 // for validation by an external auditing service)…

 if (dovalidation) {

 // If the user decided to proceed with the validation, deduct a point

 // of type "AppPointValidationRequest" from her point balance

 ->ObjectDebitActivityPoint(#AppPointTripLogValidation, cooobj.objname,

 true, null);

 // TODO: Continue with validation

 }

 }

 }

 …

 }

 }

 }

}

Note: Whenever a Cloud App attempts to deduct a point from a user‟s point balance, the user is asked to
confirm the transaction (see Figure 68).

Figure 68: Request to debit Activity Points

 162 Developing Fabasoft Folio Cloud Apps

10.4 Getting your money

Just sit back and relax, because your share of the proceeds from Cloud App subscription sales and Activity
Point purchases is automatically deposited into your bank account.

In addition, a detailed sales statement is generated and saved in the App Sales Statements property of
your developer project.

For further details refer to the Fabasoft Folio Cloud developer agreement at

 http://www.foliocloud.com/developeragreement.

 164 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 165

11 Maintaining and improving your Cloud App

In this chapter, we describe what you need to do in terms of maintenance and how you can release an
update of your Cloud App.

11.1 Updating Fabasoft app.ducx projects using Eclipse

As the list of Fabasoft Folio Cloud features keeps growing and growing over time, you will also have to
keep your Fabasoft app.ducx project up to date.

With every release of a Fabasoft Folio Cloud update, a plethora of new object classes and properties, use
cases and applications, and dozens of other new component objects become available to you to use and
incorporate into your Cloud App.

And even though we make every effort to minimize the impact on you and your Cloud App, you sometimes
may be required to make some changes to your existing code in order to keep your Cloud App intact.

For example, if the reference of an object class provided by Fabasoft is changed for reasons of
consistency, and your Cloud App uses this object class as a prerequisite, you will need to adapt your code
before this change is released to the public with the next Fabasoft Folio Cloud update.

Note: Periodically check the “What‟s New” documents (see chapter “Fabasoft Folio Cloud update cycle” on
page 26) to find out about changes that might impact your Cloud App, so you can make necessary code
modifications in time.

To keep your Cloud App up to date, carry out the following steps in Eclipse:

 Make sure that the Fabasoft app.ducx plug-in is up to date (see chapter “Updating the Fabasoft
app.ducx plug-in” on page 34).

 In the “Project Explorer”, navigate to your Cloud App project.

 Open the context menu of the “Software Component References” folder and click “Update All
References”.

 Open the “Project” menu and click “Clean”.

This way you get an overview of all warnings and errors in your project that may arise because of changes
in Fabasoft Folio Cloud caused by the update. For more information about renamed, deleted and obsolete
component objects consult [Faba11i].

11.2 Reacting to user feedback and providing customer support

The main platform for communicating with the subscribers of your Cloud App is the Fabasoft Folio Cloud

forum at http://www.foliocloud.com/support/forum.

Once your Cloud App has been released, a special subsection will be created for your Cloud App in the
forum and you are required to monitor and process the forum posts created in there.

If you want to provide premium support services to the users of your Cloud App, you can host and handle
your own support system.

For further details refer to the Fabasoft Folio Cloud developer agreement at

http://www.foliocloud.com/developeragreement.

 166 Developing Fabasoft Folio Cloud Apps

11.3 Releasing an updated version

To create and release an updated version of your Cloud App, you have to follow these steps:

 Create a new release object: In your development project, create a new release object for the next
version of your Cloud App and select “Start Release” from its context menu.

 Update your code, tests and documentation: Make all the desired changes to your source code,
update your unit tests, Fabasoft app.test tests and the context-sensitive help.

 Release your update: Now just follow the same steps as you did previously to release the original
version of your Cloud App. For further details refer to the chapter “Releasing your Cloud App” on page
155.

Easy peasy, isn‟t it?

 168 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 169

12 Glossary

Access Control List (ACL)
Determines which user is granted which access rights for an object.

Activity Point
A pre-paid credit token that can be used for executing premium features or consuming services provided
by a Cloud App.

Branch
A button in a dialog of a virtual application.

Cloud App
A self-contained application hosted in Fabasoft Folio Cloud.

Cloud Sandbox
The Fabasoft Folio Cloud installation that is part of your Cloud App VDE and allows you to develop and
test your Cloud Apps.

Constraint
A rule for calculating or validating values, or for preventing invalid data entry into a property.

Continuous Integration (CI) Environment
An environment for running automated tests for quality control.

Dialog
An element of a virtual application for presenting a user interface to provide a means of communication
between a user and a virtual application.

Fully Qualified Reference
A unique identifier for referring to a component object. The fully qualified reference consists of the software
component prefix, followed by a colon and the reference of a component object, e.g.

COOSYSTEM@1.1:objname.

Keyword
A reserved sequence of characters.

Reference
An identifier for referring to a component object.

Software Component Prefix

The part of a fully qualified reference that refers to the software component, e.g. COOSYSTEM@1.1.

Trigger
An action that is invoked when a predefined event occurs.

Virtual Development Environment (VDE)
A preconfigured development environment including software tools and services for supporting Cloud App
development.

 170 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 171

13 List of figures

Figure 1: The steps for getting started 13

Figure 2: The login screen of Fabasoft Folio Cloud 18

Figure 3: Entering your OpenID account name in the account settings 19

Figure 4: “Home” portal page of the Fabasoft Folio Cloud portal 20

Figure 5: “Contacts” portal page of the Fabasoft Folio Cloud portal 20

Figure 6: “Mindbreeze” portal page of the Fabasoft Folio Cloud portal 21

Figure 7: Getting a subscription to the “Cloud App Development” package 25

Figure 8: Fabasoft Folio Cloud release plan 27

Figure 9: Fabasoft Folio Cloud release calendar 27

Figure 10: The Scrum methodology 28

Figure 11: Required deliverables to get your Cloud App deployed 29

Figure 12: Specifying a new update site in Eclipse 34

Figure 13: Fabasoft Folio Cloud App VDE self-service portal 36

Figure 14: Fabasoft Folio Cloud Sandbox 37

Figure 15: Fabasoft app.telemetry dashboard 38

Figure 16: Class diagram of the logbook sample 41

Figure 17: Properties of a “Development Project” 43

Figure 18: Starting a release 44

Figure 19: Fabasoft app.ducx preferences 45

Figure 20: Selecting the Subversion project import wizard 46

Figure 21: Entering the Subversion repository location information 47

Figure 22: Selecting the “dev” branch 48

Figure 23: Confirming the project name 48

Figure 24: Selecting the address range file 49

Figure 25: Using the Repository Browser of TortoiseSVN to access your source code 50

Figure 26: Your Cloud App project in Eclipse 53

Figure 27: Adding a software component reference 58

Figure 28: Editing the multilingual names of your object model elements 62

Figure 29: Cleaning the Cloud App project to recompile it from scratch 63

Figure 30: Defining a language string in the properties view 63

Figure 31: The “symbols” folder contains the image files for the symbols of your Cloud App 65

Figure 32: Selecting the “File System” import source 65

Figure 33: Importing image files from the file system 66

Figure 34: Creating a new app.ducx user interface file 67

Figure 35: Using the form designer of Fabasoft app.ducx 72

Figure 36: Committing your changes to the Subversion repository 79

 172 Developing Fabasoft Folio Cloud Apps

Figure 37: Creating a new launch configuration in Eclipse 80

Figure 38: Searching your Cloud App 80

Figure 39: Assigning your Cloud App to a test user 81

Figure 40: Creating a logbook 81

Figure 41: Wizard for recording a new trip 83

Figure 42: Wizard for canceling recorded trips 102

Figure 43: Renaming a property in the form designer 107

Figure 44: Wizard for closing a trip log 108

Figure 45: Displaying a property as a list column 110

Figure 46: Using a Google Chart to display mileage information 114

Figure 47: Assigning a control to a property 114

Figure 48: Cloud App license check prompting a user to obtain a valid license 121

Figure 49: App categories in the “Create” dialog box 123

Figure 50: Displaying context-sensitive help 125

Figure 51: WSDL output generated for the web service 127

Figure 52: Viewing the trace output of the Fabasoft app.ducx Tracer in Eclipse 129

Figure 53: Viewing the trace output of the Fabasoft app.ducx Tracer in the self-service portal 130

Figure 54: Executing a unit test 137

Figure 55: Checking out the Fabasoft app.test project 139

Figure 56: Importing an existing Fabasoft app.test project 139

Figure 57: Selecting the Fabasoft app.test project to import 140

Figure 58: Creating a new test 141

Figure 59: Editing the source code of a test 142

Figure 60: Starting the Fabasoft app.test recorder 144

Figure 61: Working with the Fabasoft app.test recorder 144

Figure 62: Running a test 147

Figure 63: Checking the coverage 149

Figure 64: The Cloud App release process 155

Figure 65: Submitting your Cloud App for review 156

Figure 66: Results of the release process 157

Figure 67: The “Statement” page of the development project 160

Figure 68: Request to debit Activity Points 161

 174 Developing Fabasoft Folio Cloud Apps

 Developing Fabasoft Folio Cloud Apps 175

14 Bibliography and useful links

[ApSF11] Apache Software Foundation: “Apache Subversion”. URL: http://subversion.apache.org
[Retrieved on March 8, 2011]

[Ecli11] Eclipse Foundation: “Eclipse Downloads”. URL: http://www.eclipse.org/downloads
[Retrieved on February 18, 2011]

[Faba11a] Fabasoft: “White Paper: An Introduction to Fabasoft app.ducx”.

[Faba11b] Fabasoft: “White Paper: Fabasoft app.test“.

[Faba11c] Fabasoft: “White Paper: Creating automated tests for Cloud Apps with Fabasoft app.test”.

[Faba11d] Fabasoft: “Cloud Developer Information”. URL: http://www.foliocloud.com/cdi [Retrieved on
June 1, 2011]

[Faba11e] Fabasoft: “White Paper: Parameters of Fabasoft Folio Controls“.

[Faba11f] Fabasoft: “White Paper: An Introduction to Fabasoft Folio”.

[Faba11g] Fabasoft: “White Paper: Installation and Configuration of Fabasoft Integration for CalDAV”.

[Faba11h] Fabasoft: “White Paper: Installation and Configuration of Fabasoft Integration for CMIS”.

[Faba11i] Fabasoft: “White Paper: Renamed, Deleted and Obsolete Component Objects”.

[IETF07] IETF: “RFC 4791 – Calendaring Extensions to WebDAV (CalDAV)”. URL:
http://tools.ietf.org/html/rfc4791 [Retrieved on May 17, 2011]

[OASI10] OASIS: “Content Management Interoperability Services (CMIS) Version 1.0”. URL:
http://docs.oasis-open.org/cmis/CMIS/v1.0/os/cmis-spec-v1.0.html [Retrieved on May 17,
2011]

[Orac11a] Oracle: “Download Free Java Software”. URL: http://www.java.com/download [Retrieved on
February 18, 2011]

[Orac11b] Oracle: “How to Write Doc Comments for the Javadoc Tool”. URL:
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html [Retrieved
on March 23, 2011]

[ScrA09] Scrum Alliance: “What Is Scrum?”. URL: http://www.scrumalliance.org/learn_about_scrum
[Retrieved on February 22, 2011]

 Developing Fabasoft Folio Cloud Apps 177

	1 Getting started
	1.1 What is Fabasoft Folio Cloud?
	1.2 What is Fabasoft app.ducx?
	1.3 Who should read this book?
	1.4 Why develop Cloud Apps?
	1.5 What do you need to get started?
	1.6 Which software do you need on your computer?
	1.7 What is covered by this book?
	1.8 General remarks concerning examples

	2 Diving into Fabasoft Folio Cloud
	2.1 Fabasoft Folio Cloud editions
	2.2 Registration and account setup
	2.2.1 Logging in using an OpenID account
	2.2.2 Logging in using a certificate
	2.2.3 Logging in using mobile PIN

	2.3 The Fabasoft Folio Cloud portal
	2.3.1 The ‘Home’ portal page
	2.3.2 The ‘Contacts’ portal page
	2.3.3 The ‘Mindbreeze’ portal page

	2.4 Sharing contents with others
	2.5 Join the community!
	2.6 Invite others to join the Fabasoft Folio Cloud!

	3 Starting your Cloud App development project
	3.1 Getting a Cloud App Development subscription
	3.2 Getting a Cloud App VDE subscription
	3.3 Legal aspects of Cloud App development
	3.4 Fabasoft Folio Cloud update cycle
	3.5 Managing your development project with Scrum
	3.5.1 What is Scrum?
	3.5.2 The “Scrum Projects” Cloud App

	3.6 What you need to do to get your Cloud App deployed

	4 Setting up the development environment
	4.1 Installing the Eclipse IDE
	4.2 Installing the Fabasoft app.ducx plug-in
	4.2.1 Updating the Fabasoft app.ducx plug-in
	4.2.2 Improving the performance of Eclipse

	4.3 Working with the Cloud App VDE
	4.3.1 Fabasoft Folio Cloud Sandbox
	4.3.2 Fabasoft app.telemetry

	5 Creating your Cloud App
	5.1 Introducing your first Cloud App
	5.2 Creating the development project
	5.3 Creating a release
	5.4 Importing the Fabasoft app.ducx project in Eclipse
	5.4.1 Defining the default web service
	5.4.2 Defining the default range service
	5.4.3 Importing the Fabasoft app.ducx project from Subversion
	5.4.4 Selecting the address range

	5.5 Accessing and managing the source code in Subversion

	6 Implementing your Cloud App
	6.1 Introducing the domain-specific languages of Fabasoft app.ducx
	6.2 Defining the object model
	6.2.1 Adding the ‘Trip’ structure
	6.2.2 Using terms for the trip type
	6.2.3 Adding software component references
	6.2.4 Defining the ‘TripLog’ object class
	6.2.5 Defining the ‘Logbook’ object class
	6.2.6 Linking logbook and trip logs
	6.2.7 Defining the language strings of your object model elements

	6.3 Defining the symbols
	6.4 Designing the forms
	6.4.1 Defining a form set for the ‘Logbook’ object class
	6.4.2 Assigning a symbol to the ‘Logbook’ object class
	6.4.3 Defining a form set and symbol for the ‘TripLog’ object class
	6.4.4 Layouting form pages using the form designer
	6.4.4.1 Defining the layout of the “PageTripLog” form page
	6.4.4.2 Modifying the columns of the “Trip” structure

	6.4.5 Defining the columns for the ‘logtriplogs’ property
	6.4.6 Beefing up a form page

	6.5 Committing your changes to the Subversion repository
	6.6 Uploading your Cloud App into the Cloud Sandbox
	6.6.1 Deploying your Cloud App
	6.6.2 Assigning your Cloud App to a test user
	6.6.3 Your first glimpse of your Cloud App

	6.7 Implementing the use cases
	6.7.1 Adding a wizard for recording a trip
	6.7.1.1 Defining a menu use case
	6.7.1.2 Defining a dialog
	6.7.1.3 Restricting the selectable trip types
	6.7.1.4 Implementing the validation constraints
	6.7.1.5 Implementing the user interface change constraints
	6.7.1.6 Implementing the “InitTrip” use case
	6.7.1.7 Implementing the “RecordTrip” use case
	6.7.1.8 Discarding the values in the “trlnewtrip” property
	6.7.1.9 Adding the wizard to the context menu and tips pane

	6.7.2 Adding a wizard for canceling a trip
	6.7.3 Adding a wizard for closing a trip log
	6.7.4 Adding a display action to show the number of recorded trips
	6.7.5 Calculating the date of the first and last entry in a trip log

	6.8 Embedding Google visualizations
	6.9 The finishing touches
	6.9.1 Defining a name build for the ‘TripLog’ object class
	6.9.2 Establishing an ACL reference between trip log and logbook
	6.9.3 Deleting the trip logs along with the logbook
	6.9.4 Things to consider when dealing with team rooms
	6.9.5 Activating the license check for your object classes
	6.9.6 Reacting to app state changes
	6.9.7 Defining an app category
	6.9.8 Defining the context-sensitive help

	6.10 Advanced stuff
	6.10.1 Creating a web service
	6.10.2 Other supported APIs

	6.11 Tracing and debugging
	6.11.1 Tracing in Fabasoft app.ducx expression language
	6.11.2 Debugging your Cloud App

	7 Testing your Cloud App
	7.1 Creating and running unit tests
	7.1.1 Creating a unit test
	7.1.2 Running a unit test
	7.1.3 Creating and running a unit test group

	7.2 Creating and running Fabasoft app.test tests
	7.2.1 Installing Fabasoft app.test Studio primo
	7.2.2 Importing the Fabasoft app.test project
	7.2.3 Importing the common test sequences and use cases
	7.2.4 Creating a test
	7.2.5 Running a test

	7.3 Checking and improving the coverage of your tests

	8 Getting help, code samples and support
	8.1 Help and documentation
	8.2 Retrieving code samples from the public Subversion repository
	8.3 Getting support from Fabasoft and the community
	8.4 Staying up to date

	9 Releasing your Cloud App
	9.1 About the release process
	9.2 Submitting your app for review
	9.3 Continuous integration environment tests
	9.4 Code review
	9.5 Getting feedback

	10 Reaping the profits
	10.1 About price tiers
	10.2 Defining the stuff related to billing
	10.3 Activity Points
	10.4 Getting your money

	11 Maintaining and improving your Cloud App
	11.1 Updating Fabasoft app.ducx projects using Eclipse
	11.2 Reacting to user feedback and providing customer support
	11.3 Releasing an updated version

	12 Glossary
	13 List of figures
	14 Bibliography and useful links

